The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA-RNA interaction.
View Article and Find Full Text PDFMolecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples.
View Article and Find Full Text PDFMotivation: Intra-tumor heterogeneity presents itself through the evolution of subclones during cancer progression. Although recent research suggests that this heterogeneity has clinical implications, in silico determination of the clonal subpopulations remains a challenge.
Results: We address this problem through a novel combinatorial method, named clonality inference in tumors using phylogeny (CITUP), that infers clonal populations and their frequencies while satisfying phylogenetic constraints and is able to exploit data from multiple samples.