Publications by authors named "Cenk Kıg"

Objectives: Humans are unknowingly exposed to mycotoxins through the consumption of plant-derived foods and processed products contaminated with these toxic compounds. In addition to agricultural losses, Fusarium toxins pose a threat to human health. However, the effects of fusariotoxins on the viability and proliferation of stem cells have not been fully explored.

View Article and Find Full Text PDF

We aimed to investigate the in vitro physiologic effects of xylene, chloroform, orange oil and eucalyptus oil solvents for dissolving gutta-percha on L929 and HOB cell lines; 2.5 and 10 μL mL of these solvents were tested for 24, 48 and 72 h. Gutta-percha solvents inhibited the proliferation rate of fibroblasts in a dose- and time-dependent manner; however, no inhibition was detected in HOB (evaluated using MTT assay).

View Article and Find Full Text PDF

Objectives: Dehydroepiandrosterone (DHEA) is an endogenous hormone that acts as a ligand for several cellular receptors. An age-dependent decline in circulating levels of DHEA is linked to changes in various physiological functions. In gynecological clinical practice, DHEA is commonly prescribed to induce ovulation.

View Article and Find Full Text PDF

Objectives: Betahistine is a histamine analog commonly prescribed for symptomatic treatment of vertiginous symptoms. studies have shown that betahistine was not toxic at the prescribed doses in a nasal epithelial cell line. However, the effect of betahistine on other cell types has not been studied.

View Article and Find Full Text PDF

Background/aim: Tuberculosis is a public health problem that still remains significant. For prevention, diagnosis, and treatment of tuberculosis more effective novel biomarkers are needed. MicroRNAs can regulate innate and adaptive immune responses, alter host-pathogen interactions, and affect progression of diseases.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved catabolic mechanism, by which eukaryotic cells recycle or degrades internal constituents through membrane-trafficking pathway. Thus, autophagy provides the cells with a sustainable source of biomolecules and energy for the maintenance of homeostasis under stressful conditions such as tumor microenvironment. Recent findings revealed a close relationship between autophagy and malignant transformation.

View Article and Find Full Text PDF

Malignant mucosal melanoma is an uncommon disease with a low rate of survival. Malignancies of nasal mucosa which usually presents with nasal obstruction, epistaxis and back drip are difficult to treat and often have poor prognosis. The present case had presented to our clinic with classic symptoms and diagnostic findings of nasal polyposis.

View Article and Find Full Text PDF

Autophagy is biological mechanism allowing recycling of long-lived proteins, abnormal protein aggregates, and damaged organelles under cellular stress conditions. Following sequestration in double- or multimembrane autophagic vesicles, the cargo is delivered to lysosomes for degradation. ATG5 is a key component of an E3-like ATG12-ATG5-ATG16 protein complex that catalyzes conjugation of the MAP1LC3 protein to lipids, thus controlling autophagic vesicle formation and expansion.

View Article and Find Full Text PDF

Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing.

View Article and Find Full Text PDF

Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem-like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs.

View Article and Find Full Text PDF

The invertase mutant defective in the glucose signaling pathway of Schizosaccharomyces pombe (ird11) is resistant to glucose repression. This mutant is able to consume sucrose alongside glucose and grows in glucose-containing media with a generation time close to that of the wild type. Intracellular oxidation, protein carbonyl, and reduced glutathione levels and catalase, superoxide dismutase, and glutathione peroxidase activity were investigated in ird11, to determine the relationship between oxidative stress response and glucose signaling.

View Article and Find Full Text PDF

Nitric oxide synthases (NOS) catalyze the synthesis of ubiquitous signaling molecule nitric oxide (NO) which controls numerous biological processes. Using a spectrofluorometric NOS assay, we have measured the rate of total NO production in the crude cell extracts of Schizosaccharomyces pombe. NO production was reduced in the absence of NOS cofactors calmodulin and tetrahydrobiopterin, and a competitive NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) was able to cause a statistically significant inhibition on the rate of total NO production.

View Article and Find Full Text PDF

We have isolated 14 different Schizosaccharomyces pombe mutants that synthesize invertase enzyme constitutively. Analyses of invertase activities revealed that the degrees of resistance to glucose repression were not similar among different complementation groups. One of the complementation groups appeared to be associated with functional and/or regulatory defects in hexose transport.

View Article and Find Full Text PDF