In this work, we report the formation of a novel, aqueous-based thermo-responsive, supramolecular gelling system prepared by a convenient and efficient self-assembly of a long-chain amino-amide and citric acid. To determine the viscosity behavior and to gain insights into the gelation mechanism, a complementary combination of techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and sinusoidal oscillatory tests, were used. The supramolecular gelator exhibited remarkably reversible sol-gel transitions induced by temperature at 76 °C.
View Article and Find Full Text PDFUnlabelled: This study investigates the structural properties of the hind leg femur-tibia joint in adult katydids (Orthoptera: Tettigoniidae), including its tribological and mechanical properties. It is of particular interest because the orthopteran (e.g.
View Article and Find Full Text PDFAs electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach.
View Article and Find Full Text PDF