The reduction of friction-induced noise is a crucial research area for enhancing vehicle comfort, and this paper proposes a method based on circular pit texture to achieve this goal. We conducted a long-term sliding friction test using a pin-on-disc friction and a wear test bench to verify the validity of this method. To compare the friction noise of different surfaces, texture units with varying line densities were machined on the surface of friction disk samples.
View Article and Find Full Text PDFMaterials (Basel)
December 2023
The magneto-electro-elastic (MEE) medium is a typical intelligent material with promising application prospects in sensors and transducers, whose thermal contact response is responsible for their sensitivity and stability. An effective thermal contact model between a moving sphere and a coated MEE medium with transverse isotropy is established via a semi-analytical method (SAM) to explore its thermal contact response. First, a group of frequency response functions for the magneto-electro-thermo-elastic field of a coated medium are derived, assuming that the coating is perfectly bonded to the substrate.
View Article and Find Full Text PDFTo study the friction and wear performance of carbon fiber reinforced friction materials under different working conditions, paper-based friction materials with different fibers were prepared. Experiments on the SAE#2 test bench were conducted to study the infectors including friction torques, surface temperature, coefficient of friction (COF), and surface morphologies. The results were analyzed, which indicated that the carbon fiber reinforced friction material could provide a higher friction torque and a lower temperature rising rate under the applied high pressure and high rotating speed conditions.
View Article and Find Full Text PDF