Huan Jing Ke Xue
February 2015
To investigate the impact of elevated surface ozone (O3) concentration on nitrous oxide (N2O) emission from arid farmland, field experiments were carried out during winter-wheat and soybean growing seasons under the condition of simulating O3 concentrations, including free air (CK), 100 nL x L(-1) O3 concentration (T1), and 150 nL x L(-1) O3 concentration (T2). N2O emission fluxes were measured by static dark chamber-gas chromatograph method. The results showed that the accumulative amount of N2O (AAN) were decreased by 37.
View Article and Find Full Text PDFTo investigate the impact of elevated ozone (O3) on CO2 emission from soil-winter wheat system, outdoor experiments with simulating elevated O3 concentration were conducted, and static dark chamber-gas chromatograph method was used to measure CO2 emission fluxes. Results indicated that the elevated O3 did not change the seasonal pattern of CO2 emissions from soil-winter wheat system, but significantly decreased CO2 emission fluxes during turning-green stage and elongation-pregnant stage. From heading to maturity, CO2 emission fluxes were not found to be significant difference under 100 nL x L(-1) O3 treatment compared with the control, while 150 nL x L(-1) O3 treatment significantly declined CO2 emission fluxes.
View Article and Find Full Text PDFTo investigate the effects of elevated nitrogen deposition on forest soil respiration, a simulated nitrogen deposition field experiment was conducted in northern subtropical deciduous broad-leave forest from April 2008 to April 2009. Nitrogen treatments included the control (no N addition, CK), low-N [50 kg x (hm2 x a)(-1), T(L)], medium-N [100 kg x (hm2 x a)(-1), T(M)], and high-N [150 kg x (hm2 x a)(-1), T(H)]. The respiration rates were measured by a static chamber-gas chromatograph method.
View Article and Find Full Text PDF