Metalenses, composed of patterned meta-atoms in various dimensions, offer tailored modulation of phase, amplitude, and polarization for diverse imaging applications across the visible and near-infrared spectra. However, simultaneously achieving achromatic and wide field of view (WFOV) imaging remains a significant challenge. In this paper, we propose a general inverse design framework for metalens-doublets that simultaneously enables broadband achromatic and WFOV imaging.
View Article and Find Full Text PDFAlthough metalens has made breakthroughs in various imaging applications due to its ultrathin, lightweight, and multi-functionality, simultaneously achieving wide field of view (WFOV) and achromatic imaging remains a challenge. Here, we demonstrate a harmonic metalens with a quadratic phase profile that enables WFOV imaging and achromatic imaging at certain discrete wavelengths. First, we quantitatively explain why the quadratic phase enables WFOV imaging using its Fourier Transform (FT).
View Article and Find Full Text PDFIn this paper, we propose an optimized algorithm to estimate the depth information in the 4D light field data. Our scheme has the advantage of conciseness compared to the traditional epipolar-plane image analysis method. First, we have analyzed the depth resolution properties of light field data not mentioned by the previous researchers.
View Article and Find Full Text PDFIt is difficult to solve the problem of tracing rays through an inhomogeneous medium such as the atmosphere or a flowing liquid with the existing methods whose refractive distribution cannot be characterized by any combination of formulas. A new method is developed to efficiently describe such a medium. The method essentially consists of characterizing the inhomogeneous medium with a self-adapting grid, the cell size of which can be automatically varied according to the gradient of the refractive index at each position within the medium.
View Article and Find Full Text PDF