Micromachines (Basel)
September 2023
This article discusses the process of the laser turning of rotational symmetric, cylindrical components using ultrashort laser pulses with respect to the geometrical conditions and the resulting energy distribution during the laser turning process. As a result, process predictions and potential process optimizations are feasible. Particular attention is drawn to the laser spot formation on the cylindrical surface of the work piece in conjunction with the positioning of the laser beam relative to the rotation axis of the specimen.
View Article and Find Full Text PDFThis contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion.
View Article and Find Full Text PDFWe report on laser drilling borehole arrays using ultrashort pulsed lasers with a particular focus on reducing the inadvertent heat accumulation across the workpiece by optimizing the drilling sequence. For the optimization, evolutionary algorithms are used and their results are verified by thermal simulation using Comsol and experimentally evaluated using a thermal imaging camera. To enhance process efficiency in terms of boreholes drilled per second, multi-spot approaches are employed using a spatial light modulator.
View Article and Find Full Text PDFWe demonstrate and discuss the integration of Bragg gratings in aerosol-jetted polymer optical waveguides, produced in the optical assembly and connection technology for component-integrated bus systems (OPTAVER) process. By using a femtosecond laser and adaptive beam shaping, an elliptical focal voxel generates different types of single pulse modification by nonlinear absorption in the waveguide material, which are arranged periodically to form Bragg gratings. Integration of a single grating structure or, alternatively, an array of Bragg grating structures in the multimode waveguide yields a pronounced reflection signal with typical multimodal properties, i.
View Article and Find Full Text PDFWe report on a comprehensive study of the mechanical properties of maraging steel body-centred cubic lattice structures fabricated by a hybrid additive manufacturing technology that combines laser powder bed fusion with in situ high-speed milling. As the mechanical properties of additive manufactured components are inferior to, e.g.
View Article and Find Full Text PDFThe aim of the current experimental study was to comparatively assess the surface alterations in titanium and titanium-zirconium alloy implants in terms of thread pitch topography after irradiation with an Er:YAG laser, which is recommended in the literature for its sterilizing effect in the treatment of contaminated implant surfaces. Roxolid and SLA (Sand-blasted, Large-grit, Acid-etched) implants from Straumann company with the same macro topography were investigated. The surface treatment was carried out using a wavelength of 2940 nm, 60 s irradiation time, a frequency of 10 Hz, and energies between 120 mJ and 250 mJ.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Sapphire is a robust and wear-resistant material. However, efficient and high-quality micromachining is still a challenge. This contribution demonstrates and discusses two novels, previously unreported approaches for femtosecond laser-based micromachining of rotational-symmetric sapphire workpieces, whereas both methods are in principal hybrids of laser scanning and laser turning or laser lathe.
View Article and Find Full Text PDFWe report on the laser ablation of cyclic olefin copolymer using an amplified ultrashort pulsed laser in the ultraviolet spectral range. In addition to a high ablation depth per laser-structured layer up to 74 μm at a fluence of 22 J cm-2, an excellent mean roughness Ra of laser-patterned surfaces down to 0.5 μm is demonstrated.
View Article and Find Full Text PDFWe report on an optimization study of percussion drilling thin metal sheets employing a high repetition rate, high power femtosecond laser with respect to the resulting heat accumulation. A specified simplex algorithm was employed to optimize the spatial drilling sequence, whereas a simplified thermal simulation using COMSOL was validated by comparing its results to the temperature measurements using an infrared camera. Optimization for drilling borehole matrices was aspired with respect to the generated temperature across the processed specimen, while the drilling strategy was altered in its spatial drilling sequence and by using multi-spot approaches generated by a spatial light modulator.
View Article and Find Full Text PDFWe report on a comprehensive study of laser percussion microvia drilling of FR-4 printed circuit board material using ultrashort pulse lasers with emission in the green spectral region. Laser pulse durations in the pico- and femtosecond regime, laser pulse repetition rates up to 400 kHz and laser fluences up to 11.5 J/cm2 are applied to optimize the quality of microvias, as being evaluated by the generated taper, the extension of glass fiber protrusions and damage of inner lying copper layers using materialography.
View Article and Find Full Text PDFWe present an in situ process monitoring approach for remote fiber laser cutting, which is based on evaluating images from a high-speed camera. A specifically designed image processing algorithm allows the distinction between complete and incomplete cuts by analyzing spectral and geometric information of the melt pool from the captured images of the high-speed camera. The camera-based monitoring system itself is fit to a conventional laser deflection unit for use with high-power fiber lasers, with the optical detection path being coaxially aligned to the incident laser.
View Article and Find Full Text PDFWe report on milling and tool wear characteristics of hybrid additive manufacturing comprising laser powder bed fusion and in situ high-speed milling, a particular process in which the cutter mills inside the powder bed without any cooling lubricant being applicable. Flank wear is found to be the dominant wear characteristic with its temporal evolution over utilization period revealing the typical s-shaped dependence. The flank wear land width is measured by microscopy and correlated to the achievable surface roughness of milled 3D-printed parts, showing that for flank wear levels up to 100 μm a superior surface roughness below 3 μm is accessible for hybrid additive manufacturing.
View Article and Find Full Text PDFWe report on a comprehensive study to evaluate fundamental properties of a hybrid manufacturing approach, combining selective laser melting and high speed milling, and to characterize typical geometrical features and conclude on a catalogue of design rules. As for any additive manufacturing approach, the understanding of the machine properties and the process behaviour as well as such a selection guide is of upmost importance to foster the implementation of new machining concepts and support design engineers. Geometrical accuracy between digitally designed and physically realized parts made of maraging steel and dimensional limits are analyzed by stripe line projection.
View Article and Find Full Text PDFWe report on the fabrication of rectangular microchannels with vertical sidewalls in fused silica by laser backside ablation. A 515 nm femtosecond laser is focused by an objective with a NA of 0.5 through the sample on the glass/air interface, allowing processing from the backside into the bulk material.
View Article and Find Full Text PDFWe report on micromilling cavities into fused silica by a 1030 nm femtosecond laser using 2.17 GHz bursts. The milled cavities show an increased depth per layer for a higher number of pulses per burst while the ablation efficiency is also increased.
View Article and Find Full Text PDFWe report on the fabrication and evaluation of a sharp tip negative axicon paving the way for applications in high-power ultrashort pulsed laser systems. The negative axicon is manufactured by applying a two-step all laser-based process chain consisting of ultrashort pulsed laser ablation and CO laser polishing finishing the component in less than 5 minutes. The finalized negative axicon reveals a surface roughness of 18 nm, fulfilling optical quality.
View Article and Find Full Text PDFIn this Letter, we investigate the resolution of two-photon polymerization (2PP) with an amplified mode-locked external cavity diode laser with adjustable pulse length and a high repetition rate. The experimental results are analyzed with a newly developed 2PP model. Even with low pulse peak intensity, the produced structural dimensions are comparable to those generated by traditional 2PP laser sources.
View Article and Find Full Text PDFWe report on a femtosecond laser based fabrication technique that enables simultaneous single-step generation of optical waveguides and Bragg gratings inside bulk cyclic olefin copolymers. Due to the nonlinear absorption of focused and spatially modulated laser radiation with a wavelength of 514 nm and a pulse duration of 450 fs, a modification concluding a refractive index shift increase inside the substrate can be achieved. A sophisticated characterization of the generated waveguides by means of an elaborate cut-back method reveals a maximum attenuation of 3.
View Article and Find Full Text PDFIn this contribution, we report on the generation of internal microchannels with basically unlimited channel length inside of PMMA bulk material by femtosecond laser. A precisely controllable and stable circular channel cross section is obtained by using a spatial light modulator to compensate the writing depth depending spherical aberration. Furthermore, the generation of a rotatable elliptical input beam by adaptive optics ensures a fitting of the beam shaping to the writing direction.
View Article and Find Full Text PDFWe report on the fabrication of an axicon by applying a two-step manufacturing process including a 1030 nm femtosecond and a 10.6 µm CO laser. First, the pre-defined axicon geometry is generated by high-precision femtosecond layer-by-layer ablation.
View Article and Find Full Text PDFColors of crystals, pigments, metals, salt solutions and bioluminescence occur in nature due to the optical properties of electrons in atoms and molecules. However, colors can also result from interference effects on nanostructures. In contrast to artificial coloration, which are caused by well-defined regular structures, the structural colors of living organisms are often more intense and almost angle-independent.
View Article and Find Full Text PDFWe report on laser direct generation of 3D-microchannels for microfluidic applications inside PMMA bulk material by focused femtosecond pulses. Inner lying channels with cross sectional areas from 100 µm to 4400 µm are directly created in the volume of a PMMA substrate. Using the presented process, the channel length is fundamentally unlimited.
View Article and Find Full Text PDFFor future micro- and nanotechnologies, the manufacturing of miniaturized, functionalized, and integrated devices is indispensable. In this paper, an assembly technique based on a bottom-up strategy that enables the manufacturing of complex microsystems using only optical methods is presented. A screw connection is transferred to the micrometer range and used to assemble screw- and nut-shaped microcomponents.
View Article and Find Full Text PDFDirect in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry.
View Article and Find Full Text PDF