Publications by authors named "Cem Yamali"

Depression is a debilitating mental illness that has a significant impact on an individual's psychological, social, and physical life. Multiple factors, such as genetic factors and abnormalities in neurotransmitter levels, contribute to the development of depression. Monoamine oxidase inhibitors, tricyclic antidepressants, serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors, and atypical and new-generation antidepressants are well-known drug classes.

View Article and Find Full Text PDF

Diabetes patients often rely on tailored insulin therapies, necessitating precise blends of various insulin types to achieve optimal pharmacokinetic profiles, including the quantity and action duration of insulin absorption into the bloodstream. This study aimed to develop an accurate quantification method for mixed insulin preparations, consisting of Insulin-NPH and Insulin Regular in ratios varying between 0:100-100:0. Time Domain NMR (TD-NMR) techniques, T relaxation times, and TT maps were used to analyze the mixtures.

View Article and Find Full Text PDF

A multitude of distinct Mannich bases have been synthesized and evaluated as potential therapeutics for a wide variety of diseases and medical conditions, either in the form of prodrugs or as molecules that trigger a biological response from specific targets. The Mannich reaction has been utilized to enhance the biological activity of numerous compounds, resulting in notable progress in various areas such as anticonvulsant, antimalarial, anticancer, anti-inflammatory, antiproliferative, antibacterial, antimicrobial, antitubercular, antiprotozoal, topoisomerases I and II inhibition, α-glucosidase inhibition, carbonic anhydrase inhibition, as well as research related to anti-Alzheimer's disease and anti-Parkinson's disease. Bioactive semisynthetic Mannich bases derived from natural compounds such as chalcone, curcumin, and thymol have also been identified.

View Article and Find Full Text PDF

The synthesis and biological assessment of novel multi-functionalized pyrrolidine-containing benzenesulfonamides were reported along with their antimicrobial, antifungal, CAs inhibition, and AChE inhibition as well as DNA-binding effects. The chemical structure of the compounds was elucidated by using FTIR, NMR, and HRMS. Compound , which had Ki values of 17.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial, irreversible, and age-related neurodegenerative disorder among the elderly. AD attracts attention due to its complex pathogenesis, morbidity and mortality rates, and the limitations of drugs used in the treatment of AD. Cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists are used in the clinic.

View Article and Find Full Text PDF

Pyrazole-based carbohydrazone hybrids have been considered to be a remarkable class of compounds in pharmaceutical chemistry. Here, we reported bioactivities of 4-(3-(2-(arylidene)hydrazin-1-carbonyl)-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamides (1-27) towards CA isoenzymes (hCA I, hCA II, hCA IX) and human oral squamous cell carcinoma cell line. Compounds 19 (Ki = 10.

View Article and Find Full Text PDF

The research in selective monoamine oxidases (MAO-A and MAO-B) inhibitors has been increased due to their therapeutic value for neurodegenerative diseases. In this study, 4-((2-(aryl)-4-oxoquinazolin-3(4H)-yl)amino)benzenesulfonamides were synthesized and their MAOs inhibition potentials were investigated applying in vitro fluorometric technique. The most potent compounds 7 and 8 against MAO-A had IC values of 0.

View Article and Find Full Text PDF

A series of novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides was synthesized and examined as inhibitors of cytosolic (human) hCA I and hCA II, and cancer-related transmembrane hCA IX and hCA XII isoenzymes. AC2 was the most selective inhibitor towards cancer-related hCA IX while AC8 and AC9 selectively inhibited hCA XII over off-target isoenzymes. Anticancer effects of the compounds were evaluated towards human oral squamous cell carcinoma (OSCC) cell lines, human mesenchymal normal oral cells, breast (MCF7), prostate (PC3), non-small cell lung carcinoma cells (A549), and non-tumoral fetal lung fibroblast cells (MRC5).

View Article and Find Full Text PDF

In this research, rational design, synthesis, carbonic anhydrases (CAs) inhibitory effects, and cytotoxicities of the 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1H-pyrazole-1-yl)benzenesulfonamides 1-20 were reported. Compound 18 (Ki = 7.0 nM) was approximately 127 times more selective cancer-associated hCA IX inhibitor over hCA I, while compound 17 (Ki = 10.

View Article and Find Full Text PDF

The discovery of enzyme targeting inhibitors is a popular area of drug research. Biological activities of the compounds bearing phenol and heteroaryl groups make them popular groups in drug design targeting important enzymes such as acetylcholinesterase (AChE, E.C.

View Article and Find Full Text PDF

A novel series of 4-(3-(difluorophenyl)-5-(dimethoxyphenyl)-4,5-dihydropyrazol-1-yl)benzenesulfonamides 1-8 were designed since sulfonamide and pyrazoline pharmacophores draw great attention in novel drug design due to their wide range of bioactivities including acetylcholinesterase (AChE) and human carbonic anhydrase I and II (hCA I and hCA II) inhibitory potencies. Comprehensive structure elucidation of the compounds synthesized was carried out by H NMR, C NMR, F NMR, DEPT 90-135, H-H COSY, H-C HMQC, HMBC, and HRMS spectra. The chemical shifts and splitting patterns of the protons and carbons were affected by the fluorine atoms and exciting splitting patterns were also recorded for the fluorinated compounds.

View Article and Find Full Text PDF

4-(3-Substitutedphenyl-5-polymethoxyphenyl-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonamides (9-16) were synthesized and their chemical structures were elucidated by H NMR, C NMR, and HRMS. The compounds designed include pyrazoline and sulfonamide pharmacophores in a single molecule by hibrit molecule approach which is a useful technique in medicinal chemistry in designing new compounds with potent activity for the desired several bioactivities. Inhibition potency of the sulfonamides were evaluated against human CA isoenzymes (hCA IandhCA II) and acetylcholinesterase (AChE) enzyme and also their cytotoxicities were investigated towards oral squamous cancer cell carcinoma (OSCC) cell lines (Ca9-22, HSC-2, HSC-3, and HSC-4) and non-tumor cells (HGF, HPLF, and HPC).

View Article and Find Full Text PDF

In this study, new dibenzensulfonamides, 7-9, having the chemical structure 4,4'-(5'-chloro-3'-methyl-5-aryl-3,4-dihydro-1'H,H-[3,4'-bipyrazole]-1',2-diyl)dibenzenesulfonamide were synthesized in five steps to develop new anticancer drug candidates. Their chemical structures were confirmed by H NMR, C NMR and HRMS spectra. Cytotoxicities of the dibenzensulfonamides were investigated towards HCC1937, MCF7, HeLa, A549 as tumor cell lines and towards MRC5 and Vero as non-tumor cells.

View Article and Find Full Text PDF

Recent developments in the literature have demonstrated that curcumin exhibit antioxidant properties supporting its anti-inflammatory, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Despite the valuable findings of curcumin against different cancer cells, the clinical use of curcumin in cancer treatment is limited due to its extremely low aqueous solubility and instability, which lead to poor in vivo bioavailability and limited therapeutic effects. We therefore focused in the present study to evaluate the anti-tumor potential of curcumin analogues on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10).

View Article and Find Full Text PDF

In this study, new 4-[3-(aryl)-5-substitutedphenyl-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamides (19-36) were synthesized and evaluated their cytotoxic/anticancer and CA inhibitory effects. According to results obtained, the compounds 34 (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl] benzensulfonamide, Potency-Selectivity Expression (PSE) = 141) and 36 (4-[5-(3,4,5-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-yl]benzensulfonamide, PSE = 54.5) were found the leader anticancer compounds with the highest PSE values.

View Article and Find Full Text PDF

In this study, 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides were synthesized, and inhibition effects on AChE, hCA I, and hCA II were evaluated. K values of the compounds toward hCA I were in the range of 24.2 ± 4.

View Article and Find Full Text PDF

Background: Although anticancer chemotherapeutics are available in markets, side effects related to the drugs in clinical use lead to researchers to investigate new drug candidates which are more safe, potent and selective than others. Chalcones are popular with their anticancer activities with the several reported mechanisms including inhibition of angiogenesis, inhibition of tubulin polymerization, and induction of apoptosis etc.

Objective: This study was focused on to synthesize of 1-(2,4/2,6-difluorophenyl)-3-(2,3/2,4/2,5/3,4- dimethoxyphenyl)-2-propen-1-ones (1-8) and investigate their cytotoxic properties with possible mechanism of action.

View Article and Find Full Text PDF

In this study, 4-[5-(4-hydroxyphenyl)-3-aryl-4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonamide derivatives (8-14) were synthesized for the first time by microwave irradiation and their chemical structures were confirmed by H NMR, C NMR and HRMS. Cytotoxic activities and inhibitory effects on carbonic anhydrase I and II isoenzymes of the compounds were investigated. The compounds 9 (PSE = 4.

View Article and Find Full Text PDF

In this study, 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide (1-9) types compounds were synthesized and their chemical structures were confirmed by H NMR, C NMR and HRMS spectra. Cytotoxic and carbonic anhydrase (CA) inhibitory effects of the compounds were investigated. Cytotoxicity experiments pointed out that compound 4, (4-[5-(4-chlorophenyl)-3-(4-hydroxyphenyl)-4,5-dihydro-pyrazol-1-yl]benzenesulfonamide), exerting the highest tumor selectivity (TS) and potency selectivity expression (PSE) values, can be considered as a lead compound of this study in terms of development of novel anticancer agents.

View Article and Find Full Text PDF

Phenolic bis Mannich bases having the chemical structure of 1-[3,5-bis-aminomethyl-4-hydroxyphenyl]-3-(4-halogenophenyl)-2-propen-1-ones (1a-c, 2a-c, 3a-c) were synthesized (Numbers 1, 2, and 3 represent fluorine, chlorine, and bromine bearing compounds, respectively, while a, b, and c letters represent the compounds having piperidine, morpholine, and N-methyl piperazine) and their cytotoxic and carbonic anhydrase (CA, EC 4.2.1.

View Article and Find Full Text PDF

A series of polymethoxylated-pyrazoline benzene sulfonamides were synthesized, investigated for their cytotoxic activities on tumor and non-tumor cell lines and inhibitory effects on carbonic anhydrase isoenzymes (hCA I and hCA II). Although tumor selectivity (TS) of the compounds were less than the reference compounds 5-Fluorouracil and Melphalan, trimethoxy derivatives 4, 5, and 6 were more selective than dimethoxy derivatives 2 and 3 as judged by the cytotoxicity assay with the cells both types originated from the gingival tissue. The compound 6 (4-[3-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl] benzene sulfonamide) showed the highest TS values and can be considered as a lead molecule of the series for further investigations.

View Article and Find Full Text PDF

The effects of isatin Mannich bases incorporating (1-[piperidin-1-yl (P1)/morpholin-4-yl (P2)/N-methylpiperazin-1-yl (P3)]methyl)-1H-indole-2,3-dione) moieties against human (h) carbonic anhydrase (CA, EC 4.2.1.

View Article and Find Full Text PDF

Mannich bases of thymol were synthesized. The aminomethylation reaction was realised in the ortho position of the phenol for compounds 2 (dipropylamine), 3 (benzylamine), and 4 (dibenzylamine) while it was from para position for 1 (dimethylamine), 5 (piperidine), 6 (morpholine) and 7 (N-methylpiperazine). The carbonic anhydrase (CA, EC 4.

View Article and Find Full Text PDF