Publications by authors named "Cem Sonmez"

Crystal structure of the ternary complex of human IL-24 with two receptors, IL-22R1 and IL-20R2, has been determined at 2.15 Å resolution. A crystallizable complex was created by a novel approach involving fusing the ligand with a flexible linker to the presumed low-affinity receptor, and coexpression of this construct in S2 cells together with the presumed high-affinity receptor.

View Article and Find Full Text PDF

There is intense interest in developing novel methods for the sustained delivery of low levels of clinical therapeutics. MAX8 is a peptide-based beta-hairpin hydrogel that has unique shear thinning properties that allow for immediate rehealing after the removal of shear forces, making MAX8 an excellent candidate for injectable drug delivery at a localized injury site. The current studies examined the feasibility of using MAX8 as a delivery system for nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), two neurotrophic growth factors currently used in experimental treatments of spinal cord injuries.

View Article and Find Full Text PDF

Hydrogels formed from self-assembling peptides are finding use in tissue engineering and drug delivery applications. Given the notorious difficulties associated with producing self-assembling peptides by recombinant expression, most are typically prepared by chemical synthesis. Herein, we report the design of a family of self-assembling β-hairpin peptides amenable to efficient production using an optimized bacterial expression system.

View Article and Find Full Text PDF

Rheological characterization of physically crosslinked peptide- and protein-based hydrogels is widely reported in the literature. In this review, we focus on solid injectable hydrogels, which are commonly referred to as 'shear-thinning and rehealing' materials. This class of what sometimes also are called 'yield-stress' materials holds exciting promise for biomedical applications that require well-defined morphological and mechanical properties after delivery to a desired site through a shearing process (e.

View Article and Find Full Text PDF

The MAX1 β-hairpin peptide (VKVKVKVK-V(D)PPT-KVKVKVKV-NH2) has been shown to form nanofibrils having a cross-section of two folded peptides forming a hydrophobic, valine-rich core, and the polymerized fibril exhibits primarily β-sheet hydrogen bonding.1-7 These nanofibrils form hydrogel networks through fibril entanglements as well as fibril branching.8 Fibrillar branching in MAX1 hydrogel networks provide the ability to flow under applied shear stress and immediately reform a hydrogel solid on cessation of shear.

View Article and Find Full Text PDF

Objective: The clinical course of transitional cell carcinoma is highly variable. The determination of sensitive prognostic factors for transitional cell carcinoma is very important. Therefore e-cadherin and p53 immunohistochemical activity can be used with other prognostic factors.

View Article and Find Full Text PDF