Publications by authors named "Cem Esen"

The accurate detection of biological substances such as proteins has always been a hot topic in scientific research. Biomimetic sensors seek to imitate sensitive and selective mechanisms of biological systems and integrate these traits into applicable sensing platforms. Molecular imprinting technology has been extensively practiced in many domains, where it can produce various molecular recognition materials with specific recognition capabilities.

View Article and Find Full Text PDF

The design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions.

View Article and Find Full Text PDF

The design of artificial oxyanion receptors with switchable ion preference is a challenging goal in host-guest chemistry. We here report on molecularly imprinted polymers (MIPs) with an external phospho-sulpho switch driven by small molecule modifiers. The polymers were prepared by hydrogen bond-mediated imprinting of the mono- or dianions of phenyl phosphonic acid (PPA), phenyl sulfonic acid (PSA), and benzoic acid (BA) using -3,5-bis-(trifluoromethyl)-phenyl--4-vinylphenyl urea () as the functional host monomer.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assay (ELISA) is a widely used standard method for sensitive detection of analytes of environmental, clinical, or biotechnological interest. However, ELISA has clear drawbacks related to the use of relatively unstable antibodies and enzyme conjugates and the need for several steps such as washing of nonbound conjugates and addition of dye reagents. Herein, we introduce a new completely abiotic assay where antibodies and enzymes are replaced with fluorescent molecularly imprinted polymer nanoparticles (nanoMIPs) and target-conjugated magnetic nanoparticles, which acted as both reporter probes and binding agents.

View Article and Find Full Text PDF

Molecular imprinting is the process of template-induced formation of specific recognition sites in a polymer. Synthetic receptors prepared using molecular imprinting possess a unique combination of properties such as robustness, high affinity, specificity, and low-cost production, which makes them attractive alternatives to natural receptors. Improvements in polymer science and nanotechnology have contributed to enhanced performance of molecularly imprinted polymer (MIP) sensors.

View Article and Find Full Text PDF