3D mixed perovskites have achieved substantial success in boosting solar cell efficiency, but the complicated perovskite crystal formation pathway remains mysterious. Here we present detailed crystallization kinetics of mixed perovskites FAMAPb(IBr), where FA is formamidinium and MA is methylammonium, with the addition of Cs to form a triple cation perovskite (3-CAT), in a comparison with the perovskite building block MAPbI (MAPI) via static grazing-incidence wide-angle X-ray scattering (GIWAXS) and micro-diffraction measurements. Spin-coated films produced α-perovskite peaks with no PbI or δ-intermediate phases, which was a promising result for the 3-CAT perovskite from micro-diffraction measurements.
View Article and Find Full Text PDFSolar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented.
View Article and Find Full Text PDF