Background: Abrocitinib, an oral Janus kinase 1 inhibitor, provided significant itch relief by week 2 in patients with moderate-to-severe atopic dermatitis (AD) in the phase III JADE COMPARE trial.
Objectives: This post-hoc analysis of JADE COMPARE aimed to further characterize itch response and determined whether early itch relief could predict subsequent improvements in AD severity.
Methods: JADE COMPARE was a randomized, double-blind, double-dummy, placebo-controlled trial.
Conversion efficiency as high as 80-100% and 50% selectivity for camphene and limonene was achieved with low production of polymeric byproducts (18-28%), easy recovery with a magnet and reuse for up to five cycles maintaining similar activity and distribution of products, using a new magnetically recyclable catalyst based on niobium oxide coated on superparamagnetic iron oxide nanoparticles (SPION) impregnated with phosphotungstic acid (HPW). The catalyst was demonstrated to be effective in the selective conversion of alpha and beta-pinenes into valuable terpenes, under ultrasonic probe activation and with toluene as solvent. A unique synergic effect between the components generating more active and selective catalytic sites was demonstrated, indicating that the SPION covered with 30 wt% of NbO gives the best performance when impregnated with HPW as co-catalyst.
View Article and Find Full Text PDFThe successful production of recombinant enzymes by tobacco transplastomic plants must maintain compatibility of the heterologous enzyme with chloroplast metabolism and its long-time enzyme stability. Based on previous reports, it has been taken for granted that following biolistic-transformation, homoplasticity could be obtained from the initially heteroplastic state following successive rounds of selection in the presence of the selection agent. However, several studies indicated that this procedure does not always ensure the complete elimination of unmodified wild-type plastomes.
View Article and Find Full Text PDFPlants display an amazing ability to synthesize a vast array of secondary metabolites that are an inexhaustible source of phytochemicals, bioactive molecules some of which impact the human health. Phytochemicals present in medicinal herbs and spices have long been used as natural remedies against illness. Plant tissue culture represents an alternative to whole plants as a source of phytochemicals.
View Article and Find Full Text PDFWolf-Hirschhorn Syndrome (WHS) is a human developmental disorder arising from a hemizygous perturbation, typically a microdeletion, on the short arm of chromosome four. In addition to pronounced intellectual disability, seizures, and delayed growth, WHS presents with a characteristic facial dysmorphism and varying prevalence of microcephaly, micrognathia, cartilage malformation in the ear and nose, and facial asymmetries. These affected craniofacial tissues all derive from a shared embryonic precursor, the cranial neural crest (CNC), inviting the hypothesis that one or more WHS-affected genes may be critical regulators of neural crest development or migration.
View Article and Find Full Text PDFEcuador has a great variety of climatic regions that potentiate biodiversity. The family constitutes one of the most important of the country, having identified about 4032 species with a high degree of endemism, therefore the development and research of alternative methods of storage and conservation of species is a strategy of primary interest for researchers and for society in general. In cryopreservation, temperatures reach below -190°C in order to paralyze the chemical reactions and keep the plant material viable for long periods.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
June 2017
The title organoselenium compound, CHClOSe {systematic name: 2-[(4-chloro-phen-yl)selan-yl]-2,3,4,5,6-naphtho-[1,2-]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methyl-ene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the mol-ecule is 9.96 (9)° and indicates a step-like conformation.
View Article and Find Full Text PDFIn plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis.
View Article and Find Full Text PDFThe bulk production of recombinant enzymes by either prokaryotic or eukaryotic organisms might contribute to replace environmentally non-friendly chemistry-based industrial processes with enzyme-based biocatalysis, provided the cost of enzyme production is low. In this context, it is worth noting that the production of recombinant proteins by photosynthetic organisms offer both eukaryotic (nuclear) and prokaryotic (chloroplast) alternatives, along with the advantage of an autotrophic nutrition. Compared to nuclear transformation, chloroplast transformation generally allows a higher level of accumulation of the recombinant protein of interest.
View Article and Find Full Text PDFThis work focuses on the development of a molecular tool for purification of Photosystem II (PSII) from Nicotiana tabacum (L.). To this end, the chloroplast psbB gene encoding the CP47 PSII subunit was replaced with an engineered version of the same gene containing a C-terminal His-tag.
View Article and Find Full Text PDFBiofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation.
View Article and Find Full Text PDFScientificWorldJournal
September 2014
Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode.
View Article and Find Full Text PDFEvolution of vascular plants required compromise between photosynthesis and photodamage. We analyzed representative species from two divergent lineages of vascular plants, lycophytes and euphyllophytes, with respect to the response of their photosynthesis and light-harvesting properties to increasing light intensity. In the two analyzed lycophytes, Selaginella martensii and Lycopodium squarrosum, the medium phase of non-photochemical quenching relaxation increased under high light compared to euphyllophytes.
View Article and Find Full Text PDFThe high cost of recombinant enzymes for the production of biofuel from ligno-cellulosic biomass is a crucial factor affecting the economic sustainability of the process. The use of plants as biofactories for the production of the suitable recombinant enzymes might be an alternative to microbial fermentation. In the case of enzyme accumulation in chloroplasts, it is fundamental to focus on the issue of full photosynthetic efficiency of transplastomic plants in the field where they might be exposed to abiotic stress such as high light intensity and high temperature.
View Article and Find Full Text PDFIn the recent years, the studies concerning the cultivation of Neochloris oleoabundans for biofuel purposes have increased, in relation to its capability to accumulate lipids when grown under nutrient starvation. Unfortunately, this cultivation mode does not allow to reach high biomass densities, which are required to improve the feasibility of the process. Increasing knowledge of the microalgal physiology is necessary to obtain new useful information for the improvement of culture performance in the perspective of large-scale cultivation.
View Article and Find Full Text PDFMost photosynthetically fixed carbon is contained in cell wall polymers present in plant biomasses, the largest organic carbon source in the biosphere. The degradation of these polymers for biotechnological purposes requires the combined action of several enzymes. To identify new activities, we examined which enzymes are activated by an endophytic strain of Chaetomium globosum to degrade cellulose-containing substrates.
View Article and Find Full Text PDFSomatic embryogenesis is crucial for the propagation of endangered Ecuadorian orchid species, among them Cyrtochilum loxense, in view of the fact that their number in nature or in collections is quite reduced. One of the genes expressed during somatic and zygotic embryogenesis is Somatic Embryogenesis Receptor-like Kinase (SERK). Despite the development of somatic embryogenesis protocols for orchids, no SERK genes have been isolated from this family.
View Article and Find Full Text PDFNi-phosphine complexes were used as catalysts for the cycloaddition of various ketenes and diynes. In general, 2,4-cyclohexadienones were formed instead of products arising from decarbonylation of the ketenes.
View Article and Find Full Text PDFPhotosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chloroplast genes. In this study we report the genome-wide responses caused by the deletion of tobacco psaA and psbA genes coding core components of photosystem I (PSI) and photosystem II (PSII), respectively, generated through a chloroplast genetic engineering approach.
View Article and Find Full Text PDFThe oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA).
View Article and Find Full Text PDFPurpose: To obtain more objective presurgical measurements of clinical interest, this study proposes a new method of measuring and classifying bone density.
Materials And Methods: The density of bovine bone blocks of different qualities was first measured in Hounsfield units (HU) using computed tomography (CT). Next, bone cylinders corresponding to each examined area were retrieved.
An emerging view of plant cell cycle regulators, including the E2F transcription factors, implicates them in the integration of cell proliferation and development. Arabidopsis encodes six E2F proteins that can act as activators or repressors of E2F-responsive genes. E2FA, E2FB and E2FC interact with the retinoblastoma-like RBR protein and bind to DNA together with their DP partners.
View Article and Find Full Text PDF* Minichromosome maintenance (MCM) proteins are subunits of the pre-replication complex that probably function as DNA helicases during the S phase of the cell cycle. Here, we investigated the function of AtMCM2 in Arabidopsis. * To gain an insight into the function of AtMCM2, we combined loss- and gain-of-function approaches.
View Article and Find Full Text PDF