Publications by authors named "Celize M Tcacenco"

Synthesis of a new class of phosphatidylcholine analogues derived from glyceric acid is reported for spectroscopic studies of phospholipases and conformation of phospholipid side-chains in biological membranes, using fluorescence resonance energy transfer (FRET) techniques.

View Article and Find Full Text PDF

In aqueous solution, amphiphilic ionenes such as the [3,22]-ionene spontaneously adopt globular conformations and form microdomains that are highly micelle-like, i.e. are capable of solubilizing organic molecules, binding and exchanging counterions and accelerating or inhibiting the rates of bimolecular reactions.

View Article and Find Full Text PDF

Micelles formed in water from ammonium dodecyl sulfate (AmDS) are characterized using time-resolved fluorescence quenching (TRFQ), electron paramagnetic resonance (EPR), conductivity, Krafft temperature, and density measurements. TRFQ was used to measure the aggregation number, N, and the quenching rate constant of pyrene by dodecylpyridinium chloride, k(Q). N depends only on the concentration (C(aq)) of ammonium ions in the aqueous phase whether these counterions are derived from the surfactant alone or from the surfactant plus added ammonium chloride as follows: N = N0(C(aq)/cmc0)(gamma), where N0 is the aggregation number at the critical micelle concentration in the absence of added salt, cmc0, and is equal to 77, 70, and 61 at 16, 25, and 35 degrees C, respectively.

View Article and Find Full Text PDF

Phospholipase C catalyzed hydrolysis of dimyristoyl phosphatidylcholine (DMPC) in phospholipid-bile salt mixed micelles was studied with particular attention on the relationship between interfacial enzyme activity and the physicochemical properties of substrate aggregates. Steady state kinetics is observed and it is argued that conditions for steady state exist because the enzyme encounters a steady supply of substrate by hopping between micelles at a rate faster than the chemical reaction rate. An existing kinetic model is reformulated to a more usable form.

View Article and Find Full Text PDF