Publications by authors named "Celino M"

Graphene is an ideal candidate material for spintronics due to its layered structure and peculiar electronic structure. However, in its pristine state, the production of magnetic moments is not trivial. A very appealing approach is the chemical modification of pristine graphene.

View Article and Find Full Text PDF

We report on DFT-TDDFT studies of the structural, electronic and vibrational properties of B24N24 nanocapsules and the effect of encapsulation of homonuclear diatomic halogens (Cl2, Br2 and I2) and chalcogens (S2 and Se2) on the interaction of the B24N24 nanocapsules with the divalent magnesium cation. In particular, to foretell whether these BN nanostructures could be proper negative electrodes for magnesium-ion batteries, the structural, vibrational and electronic properties, as well as the interaction energy and the cell voltage, which is important for applications, have been computed for each system, highlighting their differences and similarities. The encapsulation of halogen and chalcogen diatomic molecules increases the cell voltage, with an effect enhanced down groups 16 and 17 of the periodic table, leading to better performing anodes and fulfilling a remarkable cell voltage of 3.

View Article and Find Full Text PDF

Using first-principles calculations based on density functional theory, we investigated the effects of surface functionalization on the energetic and electronic properties of hydrogenated and chlorinated silicon nanowires oriented along the <112> direction. We show that the band structure is strongly influenced by the diameter of the nanowire, while substantial variations in the formation energy are observed by changing the passivation species. We modeled an octane moiety absorption on the (111) and (110) surface of the silicon nanowire to address the effects on the electronic structure of the chlorinated and hydrogenated systems.

View Article and Find Full Text PDF

With the continued digitization of the energy sector, the problem of sunken scholarly data investments and forgone opportunities of harvesting existing data is exacerbating. It compounds the problem that the reproduction of knowledge is incomplete, impeding the transparency of science-based targets for the choices made in the energy transition. The FAIR data guiding principles are widely acknowledged as a way forward, but their operationalization is yet to be agreed upon within different research domains.

View Article and Find Full Text PDF

The thermodynamic stability of hydroxylated graphane, that is, fully sp graphene derivatives coordinated with -H and -OH groups, has been recently demonstrated by ab initio calculations. Within the density functional theory approach, we investigate the electronic property modifications of graphane by progressive hydroxylation, that is, by progressively substituting -H with -OH groups. When 50% of graphane is hydroxylated, the energy bandgap reaches its largest value of 6.

View Article and Find Full Text PDF

The surface of nanowires is a source of interest mainly for electrical prospects. Thus, different surface chemical treatments were carried out to develop recipes to control the surface effect. In this work, we succeed in shifting and tuning the semiconductivity of a Si nanowire-based device from n- to p-type.

View Article and Find Full Text PDF

Laser-driven proton acceleration, as produced during the interaction of a high-intensity (I > 1 × 10 W/cm), short pulse (<1 ps) laser with a solid target, is a prosperous field of endeavor for manifold applications in different domains, including astrophysics, biomedicine and materials science. These emerging applications benefit from the unique features of the laser-accelerated particles such as short duration, intense flux and energy versatility, which allow obtaining unprecedented temperature and pressure conditions. In this paper, we show that laser-driven protons are perfectly suited for producing, in a single sub-ns laser pulse, metallic nanocrystals with tunable diameter ranging from tens to hundreds of nm and very high precision.

View Article and Find Full Text PDF

The solubilization mechanism of lipid membranes in the presence of Triton X-100 (TX-100) is investigated at molecular resolution using molecular dynamics (MD) simulations. Thanks to the large time and length scales accessible by the hybrid particle-field formulation of the models employed here, the complex process of membrane solubilization has been studied, with the goal of verifying the three stage model reported in the literature. DPPC lipid bilayers and vesicles have been studied at different concentrations of the TX-100 detergent employing coarse grained (CG) models.

View Article and Find Full Text PDF

The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%.

View Article and Find Full Text PDF

A multiscale scheme is proposed and validated for Triton X-100 (TX-100), which is a detergent widely employed in biology. The hybrid particle field formulation of the model allows simulations of large-scale systems. The coarse-grained (CG) model, accurately validated in a wide range of concentrations, shows a critical micelle concentration, shape transition in isotropic micellar phase, and appearance of hexagonal ordered phase in the experimental ranges reported in the literature.

View Article and Find Full Text PDF

Indications of the Cu2Zr Laves phase are observed in MD simulations of amorphous Cu64Zr36 upon isothermal holding just above the glass transition temperature. The structural evolution towards Cu2Zr is accompanied by an increase in the fraction of Cu-centered icosahedra, which demonstrates that a large icosahedral fraction does not just indicate structural relaxation. The crystal-like regions generate an increase in strength and Young's modulus, and a stronger localized shear band.

View Article and Find Full Text PDF

The interface of biological molecules with inorganic surfaces has been the subject of several recent studies. Experimentally some amino acids are evidenced to play a critical role in the adhesion and selectivity on oxide surfaces; however, detailed information on how the water molecules on the hydrated surface are able to mediate the adsorption is still missing. Accurate total energy ab initio calculations based on dispersion-corrected density functional theory have been performed to investigate the adsorption of selected amino acids on the hydrated ZnO(101̅0) surface, and the results are presented and discussed in this paper.

View Article and Find Full Text PDF

Arg, Lys and Asp amino acids are known to play a critical role in the adhesion of the RKLPDA engineered peptide on the (101) surface of the titania anatase phase. To understand their contribution to peptide adhesion, we have considered the relevant charge states due to protonation (Arg and Lys) or deprotonation (Asp) occurring in neutral water solution, and studied their adsorption on the (101) anatase TiO2 surface by ab initio total energy calculations based on density functional theory. The adsorption configurations on the hydrated surface are compared to those on the dry surface considering also the presence of the hydration shell around amino acid side-chains.

View Article and Find Full Text PDF

We performed a comparative study of the adsorption of an in vitro selected peptide on two different carbon surfaces: a flat graphene and a curved (0,15) nanotube. The sequence was selected from recent experiments, as the one giving the highest carbon affinity for carbon nanotubes. Rigid docking of the molecule on the two surfaces by a genetic algorithm was followed by molecular dynamics simulations with empirical force fields (OPLS-AA) in water at finite temperature.

View Article and Find Full Text PDF

We elucidate the structural properties of amorphous SiSe2 by first-principles molecular dynamics. The calculated structure factor is in very good agreement with experiments, as well as the number of corner- and edge-sharing tetrahedra. By focusing on the sequences of Si atoms linked via intra- and intertetrahedral bonds, we identify the predominant structural motifs.

View Article and Find Full Text PDF