Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. We herein show that YM155 exerts single agent toxicity on primary breast cancer cells grown in an ex vivo assay preserving tumor microenvironment.
View Article and Find Full Text PDFIntroduction: Inappropriate Notch signaling, downstream of γ-secretase activity, is understood to have tumor-promoting function and to be associated with poor outcome in cancer, of the breast in particular. The molecular basis of antitumoral effects of its inhibitors, however, remains poorly characterized. Moreover, the effects of their combination with the pro-apoptotic pharmacologic inhibitor of Bcl-2/Bcl-xL, ABT-737, have never been evaluated.
View Article and Find Full Text PDFBackground: Notch signaling pathway controls key functions in vascular and endothelial cells (ECs) where Notch4 plays a major role. However, little is known about the contribution of other Notch receptors. This study investigated regulation of Notch2 and further examined its implication in EC dysfunction.
View Article and Find Full Text PDFSurvivin is selectively expressed in most of common human cancers and is now viewed as a potent modulator of the cell death/proliferation balance in tumour cells. We previously found that myeloma cells expressed high levels of Survivin protein in correlation with disease progression and that Survivin knock-down by RNA interference decreased myeloma cell growth. We now demonstrate that Survivin overexpression promotes the proliferation and survival of human myeloma cells both in vitro and in vivo in the absence of their major growth factor, interleukin 6.
View Article and Find Full Text PDFDiscovered 10 years ago, survivin has a dual role in the smooth progress of mitosis and in apoptosis resistance. Survivin plays an important physiological role in development, but is absent in differentiated adult tissues. In contrast, aberrant survivin expression is found in most human cancers because of the activation of various signalling pathways.
View Article and Find Full Text PDFBlockade of CD40-CD40 ligand (CD40L) costimulation has been shown to synergize with that of CTLA4/CD28-B7 to promote transplant tolerance. To date, however, CD28-B7 interactions have been prevented using B7-blocking reagents like CTLA4-Ig that inhibit CD28-B7 together with CTLA4-B7 interactions. In this study, we have tested anti-CD28 Abs to prevent selectively CD28-B7 interactions while preserving CTLA4-B7 in addition to CD40-CD40L blockade.
View Article and Find Full Text PDFBackground: In heart allograft in the rat, a sustained costimulation blockade with CTLA4Ig prevents alloreactive T-cell activation and promotes a long-term graft survival through the action of tolerogeneic dendritic cells. It is unclear whether similar mechanisms might occur after xenotransplantation. To test that hypothesis, we have analyzed the action of CTLA4Ig in a model of CD4(+)T cell-mediated xenograft rejection.
View Article and Find Full Text PDFBackground: Blockade of the CD40-CD40L pathway results in long-term allograft survival but does not prevent chronic rejection. ICOS-ICOSL are members of the CD28-B7 family that play an important role in T-cell activation.
Methods: The authors analyzed the effect of single or combined treatment with an anti-ICOS monoclonal antibody and the fusion molecule CD40 immunoglobulin (Ig) on acute and chronic rejection of heart allografts in rats.
B7/CTLA-4 interactions negatively regulate T-cell responses and are necessary for transplant tolerance induction. Tolerance induction may therefore be facilitated by selectively inhibiting the B7/CD28 pathway without blocking that of B7/CTLA-4. In this study, we selectively inhibited CD28/B7 interactions using a monoclonal antibody modulating CD28 in a rat model of acute kidney graft rejection.
View Article and Find Full Text PDFBackground: : Blockade of the CD40-CD40L pathway results in long-term allograft survival but does not prevent chronic rejection. ICOS-ICOSL are members of the CD28-B7 family that play an important role in T-cell activation.
Methods: : The authors analyzed the effect of single or combined treatment with an anti-ICOS monoclonal antibody and CD40 immunoglobulin (Ig) on acute and chronic rejection of heart allografts in rats.
Transplantation represents a major advance in modern medicine with a major impact on the interactions between individuals and society. The numbers of patients undergoing organ transplantation increased steadily over the years and around 250,000 individuals are living nowadays in Europe with a transplanted organ. On the other hand, the numbers of cadaveric (brain-dead) donors used for organ transplantation remains stable, at around 5,000 each year, and the numbers of transplantation from living donors only slowly increase in Europe.
View Article and Find Full Text PDF