Publications by authors named "Celine Schalk-Hihi"

We identified 6-substituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). The synthesis of this class of RORγt modulators is reported, and optimization of the substituents at the quinoline 6-position that produced compounds with high affinity for the receptor is detailed. This effort identified molecules that act as potent, full inverse agonists in a RORγt-driven cell-based reporter assay.

View Article and Find Full Text PDF

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention.

View Article and Find Full Text PDF

A high-throughput screen of the ligand binding domain of the nuclear receptor retinoic acid-related orphan receptor gamma t (RORγt) employing a thermal shift assay yielded a quinoline tertiary alcohol hit. Optimization of the 2-, 3- and 4-positions of the quinoline core using structure-activity relationships and structure-based drug design methods led to the discovery of a series of modulators with improved RORγt inhibitory potency and inverse agonism properties.

View Article and Find Full Text PDF

Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign.

View Article and Find Full Text PDF

Measuring the strength of binding of low molecular weight ligands to a target protein is a significant challenge to fragment-based drug discovery that must be solved. Thermal shift assays are uniquely suited for this purpose, due to the thermodynamic effects of a ligand on protein thermal stability. We show here how to implement a thermal shift assay, describing the basic features and analysis of the protein unfolding data.

View Article and Find Full Text PDF

A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol.

View Article and Find Full Text PDF

Endothelial lipase (EL) is a phospholipase A1 (PLA1) enzyme that hydrolyzes phospholipids at the sn-1 position to produce lysophospholipids and free fatty acids. Measurement of the PLA1 activity of EL is usually accomplished by the use of substrates that are also hydrolyzed by lipases in other subfamilies such as PLA2 enzymes. In order to distinguish PLA1 activity of EL from PLA2 enzymatic activity in cell-based assays, cell supernatants, and other nonhomogeneous systems, a novel fluorogenic substrate with selectivity toward PLA1 hydrolysis was conceived and characterized.

View Article and Find Full Text PDF

The reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP).

View Article and Find Full Text PDF

A parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases.

View Article and Find Full Text PDF

The cFMS proto-oncogene encodes for the colony-stimulating factor-1 receptor, a receptor-tyrosine kinase responsible for the differentiation and maturation of certain macrophages. Upon binding its ligand colony-stimulating factor-1 cFMS autophosphorylates, dimerizes, and induces phosphorylation of downstream targets. We report the novel crystal structure of unphosphorylated cFMS in complex with two members of different classes of drug-like protein kinase inhibitors.

View Article and Find Full Text PDF

2-Hydroxy-4,6-diamino-[1,3,5]triazines are described which are a novel class of potent inhibitors of the VEGF-R2 (flk-1/KDR) tyrosine kinase. 4-(Benzothiazol-6-ylamino)-6-(benzyl-isopropyl-amino)-[1,3,5]triazin-2-ol (14d) exhibited low nanomolar potency in the in vitro enzyme inhibition assay (IC(50) = 18 nM) and submicromolar inhibitory activity in a KDR-induced MAP kinase autophosphorylation assay in HUVEC cells (IC(50) = 280 nM), and also demonstrated good in vitro selectivity against a panel of growth factor receptor tyrosine kinases. Further, 14d showed antiangiogenic activity in an aortic ring explant assay by blocking endothelial outgrowths in rat aortas with an IC(50) of 1 microM.

View Article and Find Full Text PDF