Publications by authors named "Celine Poux"

The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them.

View Article and Find Full Text PDF

The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, and , tightly linked within the -locus. A series of small non-coding RNAs also encoded within the -locus regulates the transcriptional activity of alleles, resulting in a linear dominance hierarchy between them.

View Article and Find Full Text PDF

Early stages of speciation in plants might involve genetic incompatibilities between plastid and nuclear genomes, leading to inter-lineage hybrid breakdown due to the disruption between co-adapted plastid and nuclear genes encoding subunits of the same plastid protein complexes. We tested this hypothesis in Silene nutans, a gynodioecious Caryophyllaceae, where four distinct genetic lineages exhibited strong reproductive isolation among each other, resulting in chlorotic or variegated hybrids. By sequencing the whole gene content of the four plastomes through gene capture, and a large part of the nuclear genes encoding plastid subunits from RNAseq data, we searched for non-synonymous substitutions fixed in each lineage on both genomes.

View Article and Find Full Text PDF

Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how two-component genetic systems in plants evolve and diversify, focusing on self-incompatibility (SI) in the Brassicaceae family.
  • The researchers used ancestral protein reconstruction to show that two alleles have diverged asymmetrically, with one retaining its original recognition and the other developing a new, distinct specificity.
  • The findings indicate that qualitative changes in receptor-ligand interactions contribute significantly to evolutionary novelty in this complex genetic system.
View Article and Find Full Text PDF

Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the section of the genus within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (, , and differing in geographical distribution and mating system. In addition, one of the species, , mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal.

View Article and Find Full Text PDF

TRPM8 is a cold sensor that is highly expressed in the prostate as well as in other non-temperature-sensing organs, and is regulated by downstream receptor-activated signaling pathways. However, little is known about the intracellular proteins necessary for channel function. Here, we identify two previously unknown proteins, which we have named "TRP channel-associated factors" (TCAFs), as new TRPM8 partner proteins, and we demonstrate that they are necessary for channel function.

View Article and Find Full Text PDF

The prevention of fertilization through self-pollination (or pollination by a close relative) in the Brassicaceae plant family is determined by the genotype of the plant at the self-incompatibility locus (S locus). The many alleles at this locus exhibit a dominance hierarchy that determines which of the two allelic specificities of a heterozygous genotype is expressed at the phenotypic level. Here, we uncover the evolution of how at least 17 small RNA (sRNA)-producing loci and their multiple target sites collectively control the dominance hierarchy among alleles within the gene controlling the pollen S-locus phenotype in a self-incompatible Arabidopsis species.

View Article and Find Full Text PDF

The geographic and temporal origins of Madagascar's biota have long been in the center of debate. We reconstructed a time-tree including nearly all native nonflying and nonmarine vertebrate clades present on the island, from DNA sequences of two single-copy protein-coding nuclear genes (BDNF and RAG1) and a set of congruent time constraints. Reconstructions calculated with autocorrelated or independent substitution rates over clades agreed in placing the origins of the 31 included clades in Cretaceous to Cenozoic times.

View Article and Find Full Text PDF

Background: Malagasy tenrecs belong to the Afrotherian clade of placental mammals and comprise three subfamilies divided in eight genera (Tenrecinae: Tenrec, Echinops, Setifer and Hemicentetes; Oryzorictinae: Oryzorictes, Limnogale and Microgale; Geogalinae:Geogale). The diversity of their morphology and incomplete taxon sampling made it difficult until now to resolve phylogenies based on either morphology or molecular data for this group. Therefore, in order to delineate the evolutionary history of this family, phylogenetic and dating analyses were performed on a four nuclear genes dataset (ADRA2B, AR, GHR and vWF) including all Malagasy tenrec genera.

View Article and Find Full Text PDF

Platyrrhine primates and caviomorph rodents are clades of mammals that colonized South America during its period of isolation from the other continents, between 100 and 3 million years ago (Mya). Until now, no molecular study investigated the timing of the South American colonization by these two lineages with the same molecular data set. Using sequences from three nuclear genes (ADRA2B, vWF, and IRBP, both separate and combined) from 60 species, and eight fossil calibration constraints, we estimated the times of origin and diversification of platyrrhines and caviomorphs via a Bayesian relaxed molecular clock approach.

View Article and Find Full Text PDF

Madagascar harbors four large adaptive radiations of endemic terrestrial mammals: lemurs, tenrecs, carnivorans, and rodents. These rank among the most spectacular examples of evolutionary diversification, but their monophyly and origins are debated. The lack of Tertiary fossils from Madagascar leaves molecular studies as most promising to solve these controversies.

View Article and Find Full Text PDF

The first third (ca. 1200 bp) of exon 1 of the nuclear gene encoding the interstitial retinoid-binding protein (IRBP) has been sequenced for 12 representative primates belonging to Lemuriformes, Lorisiformes, Tarsiiformes, Platyrrhini, and Catarrhini, and combined with available data (13 other primates, 11 nonprimate placentals, and 2 marsupials). Phylogenetic analyses using maximum likelihood on nucleotides and amino acids robustly support the monophyly of primates, Strepsirrhini, Lemuriformes, Lorisiformes, Anthropoidea, Catarrhini, and Platyrrhini.

View Article and Find Full Text PDF

Despite the availability of large molecular data sets, the position of the root of the eutherian tree remains a controversial issue. Depending on source data, taxon sampling and analytical approach, the root can be placed at either Afrotheria, Xenarthra, Afrotheria+Xenarthra, or murid rodents. We explored the phylogenetic potential of indels in four nuclear protein-coding genes (SCA1, PRNP, TNFalpha, and HspB3) with regard to a possible rooting at the murid branch.

View Article and Find Full Text PDF