Modulating the metabolism of cancer cells, immune cells, or both is a promising strategy to potentiate cancer immunotherapy in the nutrient-competitive tumor microenvironment. Glutamine has emerged as an ideal target as cancer cells highly rely on glutamine for replenishing the tricarboxylic acid cycle in the process of aerobic glycolysis. However, non-specific glutamine restriction may induce adverse effects in unconcerned tissues and therefore glutamine inhibitors have achieved limited success in the clinic so far.
View Article and Find Full Text PDFIn the design of delivery strategies for anticancer therapeutics, the controlled release of intact cargo at the destined tumor and metastasis locations is of particular importance. To this end, stimuli-responsive chemical linkers have been extensively investigated owing to their ability to respond to tumor-specific physiological stimuli, such as lowered pH, altered redox conditions, increased radical oxygen species and pathological enzymatic activities. To prevent premature action and off-target effects, anticancer therapeutics are chemically modified to be transiently inactivated, a strategy known as prodrug development.
View Article and Find Full Text PDF