Painful neuroma, as one of the complications of nerve injury from disease or trauma, results in instinctive neuropathic pain that adversely affects a patient's quality of life. To intercept neuroma development, capping strategies have been performed as effective therapies. Nonetheless, the most appropriate biocompatible material to shield the nerves is an urgent clinical requirement.
View Article and Find Full Text PDFPeripheral nerve regeneration and functional recovery remain major challenges in clinical practice. Nerve guidance conduits (NGCs) which can regulate the regenerative microenvironment are beneficial for peripheral nerve repair. Platelet-rich plasma (PRP) can secrete multiple growth factors to regulate the regenerative microenvironment.
View Article and Find Full Text PDFSoy protein isolate (SPI) is green, high-yield natural plant protein, which is widely applied in industry (packing material and adhesives) and tissue engineering. It is meaningful to improve the antibacterial property of soy protein isolate to fabricate versatile safe products to meet people's requirements. In this study, quaternized soy protein isolate (QSPI) was synthesized by the reaction between 2,3-epoxypropyltrimethylammonium chloride (EPTMAC) and SPI.
View Article and Find Full Text PDFThe secretome from hypoxia-preconditioned mesenchymal stem cells (MSCs) has been shown to promote resolution of inflammation and alleviate acute lung injury (ALI) through its immunomodulatory function. However, the effects of consecutive hypoxic culture on immunomodulatory function of the MSCs secretome are largely unclarified. Here, we intend to investigate the effects of consecutive hypoxia on therapeutic efficacy of conditioned medium derived from MSCs (MSCs-CM) in alleviating ALI.
View Article and Find Full Text PDFExtensive full-thickness skin defect lacks self-healing ability. Tissue engineering wound dressing is considered as the most promising approach to promote wound healing. In this study, a series of biocompatible and hemostatic nanofiber dressings were fabricated.
View Article and Find Full Text PDFThe treatment and repair of serious peripheral nerve injuries remain challenging in the clinical practice, while the application of multifunctional nerve guidance conduits (NGCs) based on naturally derived polymers has attracted much attention in recent years because of their excellent physicochemical properties and biological characteristics. (Curt. ex FV) is a popular edible mushroom characterized by hollow tubular structures, antibacterial activities, and high nutritional properties.
View Article and Find Full Text PDFPeripheral nerve regeneration requires stepwise and well-organized establishment of microenvironment. Since local delivery of VEGF-A in peripheral nerve repair is expected to promote angiogenesis in the microenvironment and Schwann cells (SCs) play critical role in nerve repair, combination of VEGF and Schwann cells may lead to efficient peripheral nerve regeneration. VEGF-A overexpressing Schwann cells were established and loaded into the inner wall of hydroxyethyl cellulose/soy protein isolate/polyaniline sponge (HSPS) conduits.
View Article and Find Full Text PDFPeripheral nerve injury is a common clinical neurological disease. In our previous study, highly oriented poly (L-lactic acid) (PLLA)/soy protein isolate (SPI) nanofiber nerve conduits were constructed and exhibited a certain repair capacity for peripheral nerve injury. In order to further improve their nerve repairing efficiency, the bone mesenchymal stem cells (BMSCs) overexpressing brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were introduced into the conduits as seed cells and then were used to repair the 10-mm sciatic nerve defects in rats.
View Article and Find Full Text PDFStem Cells Transl Med
December 2020
Sepsis is defined as life-threatening organ dysfunction caused by a deregulated immune host response to infection. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted this multifactorial and complex syndrome. The absence of specific treatment neither against SARS-CoV-2 nor against acute respiratory distress syndrome (ARDS), the most serious stage of this infection, has emphasized the need to find alternative treatments.
View Article and Find Full Text PDFBackground: Umbilical mesenchymal stem/stromal cells (MSCs), and especially those derived from Wharton's jelly (WJ), are a promising engineering tool for tissue repair in an allogeneic context. This is due to their differentiation capacity and immunological properties, like their immunomodulatory potential and paracrine activity. Hence, these cells may be considered an Advanced Therapy Medicinal Product (ATMP).
View Article and Find Full Text PDFIntroduction: Open surgery is increasingly being replaced by laparoscopic approaches that are more demanding for the surgical team. The physical and mental workload of these approaches have not been quantified.
Materials And Methods: A multicenter prospective study was performed evaluating the physical and mental stresses of 4 surgical approaches (open surgery [OS], standard laparoscopy [SL], hand-assisted laparoscopy [HAL], and robot-assisted laparoscopy [RAL]) for donor nephrectomy for the surgeon and their assistant.
In this study, a series of hydroxypropyl chitosan (HPCS)/soy protein isolate (SPI) composite films (HCSFs) with different SPI contents were developed via crosslinking, solution casting, and evaporation process. Effects of the SPI content on the structure and physical properties of the HCSFs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction patterns, scanning electron microscopy, swelling kinetics analysis, and mechanical testing. The HCSFs exhibited a lower swelling ratio with an increase in the SPI content.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2018
A series of electrodeposited chitosan-based multi-channel conduits (ECMC) with potential for peripheral nerve tissue engineering were constructed using a novel electrodeposition method combined with homemade molds. The structural and mechanical properties of the ECMC were characterized by scanning electron microscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction patterns and mechanical testing. The results showed that the electrodeposition process did not change the chemical structure of the chitosan molecules, but endowed the ECMC with high levels of flexibility and elasticity.
View Article and Find Full Text PDFBackground: The umbilical cord is becoming a notable alternative to bone marrow (BM) as a source of mesenchymal stromal cells (MSC). Although age-dependent variations in BM-MSC are well described, less data are available for MSC isolated from Wharton's jelly (WJ-MSC). We initiated a study to identify whether obstetric factors influenced MSC properties.
View Article and Find Full Text PDFScaffolds laden with stem cells are a promising approach for articular cartilage repair. Investigations have shown that implantation of artificial matrices, growth factors or chondrocytes can stimulate cartilage formation, but no existing strategies apply mechanical stimulation on stratified scaffolds to mimic the cartilage environment. The purpose of this study was to adapt a spraying method for stratified cartilage engineering and to stimulate the biosubstitute.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is a chronic joint disease characterized by a progressive and irreversible degeneration of articular cartilage. Among the environmental risk factors of OA, tobacco consumption features prominently, although, there is a great controversy regarding the role of tobacco smoking in OA development. Among the numerous chemicals present in cigarette smoke, nicotine is one of the most physiologically active molecules.
View Article and Find Full Text PDFOnce articular cartilage is damaged, it has poor ability to heal. At present, alginate-based hydrogels have 3D-dimensional physical structures with great potential for applications in carilage tissue engineering. For osteochondral defect, it will be necessary to use stratified scaffold to mimic zonal organization of cartilage.
View Article and Find Full Text PDFThanks to their immune properties, the mesenchymal stem cells (MSC) are a promising source for cell therapy. Current clinical trials show that MSC administrated to patients can treat different diseases (graft-versus-host disease (GVHD), liver cirrhosis, systemic lupus, erythematosus, rheumatoid arthritis, type I diabetes…). In this case, the most common mode of cell administration is the intravenous injection, and the hemodynamic environment of cells induced by blood circulation could interfere on their behavior during the migration and homing towards the injured site.
View Article and Find Full Text PDFAlginate-based hydrogel scaffolds are widely used in the field of cartilage regeneration and repair. If the effect of autoclaving on the alginate powder is well known, it is not the same for the possible effects of the sterilization UV treatment on the properties of the hydrogel after polymerization. To select an effective sterilization treatment of alginate-based materials, one must find what are inter-relationship between the characteristics (chemical, physical and mechanical) of alginate-based hydrogel during sterilization, and what consequences have affected on cell behavior.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2017
A series of chitosan-modified zein composite films were fabricated from zein and chitosan by a process involving blending, solution casting and evaporation. Effects of chitosan content on the structure and physical properties of the composite films were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, tensile testing, water absorption measurement and water contact angle measurement. The results showed that the zein/chitosan composite films were fabricated successfully due to the formation of hydrogen bonds between zein and chitosan, and the thermal stability, water absorption, hydrophilicity, tensile strength, flexibility of the composite films increased with an increase in chitosan content from 0 to 50%.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) have emerged as alternative sources of stem cells for regenerative medicine because of their multipotency and strong immune-regulatory properties. Also, human leukocyte antigen G (HLA-G) is an important mediator of MSC-mediated immunomodulation. However, it is unclear whether MSC retain their immune-privileged potential after differentiation.
View Article and Find Full Text PDFBackground: Due to their intrinsic properties, stem cells are promising tools for new developments in tissue engineering and particularly for cartilage tissue regeneration. Although mesenchymal stromal/stem cells from bone marrow (BM-MSC) have long been the most used stem cell source in cartilage tissue engineering, they have certain limits. Thanks to their properties such as low immunogenicity and particularly chondrogenic differentiation potential, mesenchymal stromal/stem cells from Wharton's jelly (WJ-MSC) promise to be an interesting source of MSC for cartilage tissue engineering.
View Article and Find Full Text PDFRegeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth.
View Article and Find Full Text PDFObjective: To evaluate the in vitro cytocompatibility of cellulose/soy protein isolate composite membranes (CSM) with Schwann cells and in vivo toxicity to animals.
Methods: A series of cellulose/soy protein isolate composite membranes (CSM) were prepared by blending, solution casting and coagulation process. The cytocompatibility of the CSM to Schwann cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by direct cells culture of Schwann cells on the surfaces of the CSM, respectively.