Plant defenses are very diverse and often involve contrasted costs and benefits. Quantitative defenses, whose protective effect is dependent on the dose, are effective against a wide range of herbivores, but often divert energy from growth and reproduction. Qualitative defenses often have little allocation costs.
View Article and Find Full Text PDFNestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant-herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen.
View Article and Find Full Text PDFWe are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators.
View Article and Find Full Text PDFThe paradox of enrichment has been studied almost exclusively within communities or metacommunities, without explicit nutrient dynamics. Yet local recycling of materials from enriched ecosystems may affect the stability of connected ecosystems. Here we study the effect of nutrient, detritus, producer, and consumer spatial flows-combined with changes in regional enrichment-on the stability of a metaecosystem model.
View Article and Find Full Text PDFResource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities.
View Article and Find Full Text PDFGlobal warming leads to increased intensity and frequency of weather extremes. Such increased environmental variability might in turn result in increased variation in the demographic rates of interacting species with potentially important consequences for the dynamics of food webs. Using a theoretical approach, we here explore the response of food webs to a highly variable environment.
View Article and Find Full Text PDF1. The interaction between mutualism, facilitation or interference and exploitation competition is of major interest as it may govern species coexistence. However, the interplay of these mechanisms has received little attention.
View Article and Find Full Text PDFAlthough density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal.
View Article and Find Full Text PDFSpatial heterogeneity of the environment has long been recognized as a major factor in ecological dynamics. Its role in predator-prey systems has been of particular interest, where it can affect interactions in two qualitatively different ways: by providing (1) refuges for the prey or (2) obstacles that interfere with the movements of both prey and predators. There have been relatively fewer studies of obstacles than refuges, especially studies on their effect on functional responses.
View Article and Find Full Text PDF1. Dispersal intensity is a key process for the persistence of prey-predator metacommunities. Consequently, knowledge of the ecological mechanisms of dispersal is fundamental to understanding the dynamics of these communities.
View Article and Find Full Text PDF