Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in , whereas other rare families carry variants in is immunodetected in pelvic ganglia sending autonomic axons into the bladder.
View Article and Find Full Text PDFAims: High salt intake is common and contributes to poor cardiovascular health. Urinary sodium excretion correlates directly with glucocorticoid excretion in humans and experimental animals. We hypothesized that high salt intake activates the hypothalamic-pituitary-adrenal axis activation and leads to sustained glucocorticoid excess.
View Article and Find Full Text PDF(1) Background: Chronic increases in blood flow, as in cardiovascular diseases, induce outward arterial remodeling. Thrombospondin-1 (TSP-1) is known to interact with matrix proteins and immune cell-surface receptors, but its contribution to flow-mediated remodeling in the microcirculation remains unknown. (2) Methods: Mesenteric arteries were ligated in vivo to generate high- (HF) and normal-flow (NF) arteries in wild-type (WT) and TSP-1-deleted mice (TSP-1).
View Article and Find Full Text PDFHypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion.
View Article and Find Full Text PDFGlobal salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated.
View Article and Find Full Text PDFCirc Genom Precis Med
February 2019
Background: The Asp358Ala variant (rs2228145; A>C) in the IL (interleukin)-6 receptor ( IL6R) gene has been implicated in the development of abdominal aortic aneurysms (AAAs), but its effect on AAA growth over time is not known. We aimed to investigate the clinical association between the IL6R-Asp358Ala variant and AAA growth and to assess the effect of blocking the IL-6 signaling pathway in mouse models of aortic aneurysm rupture or dissection.
Methods: Using data from 2863 participants with AAA from 9 prospective cohorts, age- and sex-adjusted mixed-effects linear regression models were used to estimate the association between the IL6R-Asp358Ala variant and annual change in AAA diameter (mm/y).
Background: Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain.
Objectives: To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries.
Aims: The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR.
View Article and Find Full Text PDF