Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked β-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation.
View Article and Find Full Text PDFThe postprandial glucose response is an independent risk factor for type 2 diabetes. Observationally, early glucose response after an oral glucose challenge has been linked to intestinal glucose absorption, largely influenced by the expression of sodium-glucose cotransporter 1 (SGLT1). This study uses Mendelian randomization (MR) to estimate the causal effect of intestinal SGLT1 expression on early glucose response.
View Article and Find Full Text PDFBackground And Aims: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression.
View Article and Find Full Text PDFCircadian-paced biological processes are key to physiology and required for metabolic, immunologic, and cardiovascular homeostasis. Core circadian clock components are transcription factors whose half-life is precisely regulated, thereby controlling the intrinsic cellular circadian clock. Genetic disruption of molecular clock components generally leads to marked pathological events phenotypically affecting behavior and multiple aspects of physiology.
View Article and Find Full Text PDFHistone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments.
View Article and Find Full Text PDFCell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID) TFs.
View Article and Find Full Text PDFBackground & Aims: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear.
View Article and Find Full Text PDFThe functional versatility of the liver is paramount for organismal homeostasis. Adult liver functions are controlled by a tightly regulated transcription factor network including nuclear receptors (NRs), which orchestrate many aspects of hepatic physiology. NRs are transcription factors sensitive to extracellular cues such as hormones, lipids, xenobiotics, etc.
View Article and Find Full Text PDFMyocardial ischemia-reperfusion injury (MIRI) induces life-threatening damages to the cardiac tissue and pharmacological means to achieve cardioprotection are sorely needed. MIRI severity varies along the day-night cycle and is molecularly linked to components of the cellular clock including the nuclear receptor REV-ERBα, a transcriptional repressor. Here we show that digoxin administration in mice is cardioprotective when timed to trigger REV-ERBα protein degradation.
View Article and Find Full Text PDFTissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor.
View Article and Find Full Text PDFTranscriptomic analyses are broadly used in biomedical research calling for tools allowing biologists to be directly involved in data mining and interpretation. We present here GIANT, a Galaxy-based tool for Interactive ANalysis of Transcriptomic data, which consists of biologist-friendly tools dedicated to analyses of transcriptomic data from microarray or RNA-seq analyses. GIANT is organized into modules allowing researchers to tailor their analyses by choosing the specific set of tool(s) to analyse any type of preprocessed transcriptomic data.
View Article and Find Full Text PDFIn the version of this article initially published, ANR grant ANR-16-RHUS-0006 to author Joel T. Haas was not included in the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDFLiver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms.
View Article and Find Full Text PDFBackground And Aims: Nonalcoholic steatohepatitis (NASH) is considered as a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression, given that it paves the way for severe liver injuries such as fibrosis and cirrhosis. The etiology of human NASH is multifactorial, and identifying reliable molecular players and/or biomarkers has proven difficult. Together with the inappropriate consideration of risk factors revealed by epidemiological studies (altered glucose homeostasis, obesity, ethnicity, sex, etc.
View Article and Find Full Text PDFProgression of fatty liver to non-alcoholic steatohepatitis (NASH) is a rapidly growing health problem. Presence of inflammatory infiltrates in the liver and hepatocyte damage distinguish NASH from simple steatosis. However, the underlying molecular mechanisms involved in the development of NASH remain to be fully understood.
View Article and Find Full Text PDFBackground: Clinical data identified an association between the use of HMG-CoA reductase inhibitors (statins) and incident diabetes in patients with underlying diabetes risk factors such as obesity, hypertension and dyslipidemia. The molecular mechanisms however are unknown.
Methods: An observational cross-sectional study included 910 severely obese patients, mean (SD) body mass index (BMI) 46.
Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown.
View Article and Find Full Text PDFBackground & Aims: In liver transplantation, organ shortage leads to the use of marginal grafts that are more susceptible to ischemia-reperfusion (IR) injury. We identified nucleotide-binding oligomerization domain 1 (NOD1) as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in IR. Herein, we aimed to elucidate the role of NOD1 in IR injury, particularly focusing on its effects on the endothelium and hepatocytes.
View Article and Find Full Text PDFBackground & Aims: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis.
View Article and Find Full Text PDFThe nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity.
View Article and Find Full Text PDFBackground & Aims: Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis.
View Article and Find Full Text PDFBackground: On-pump cardiac surgery provokes a predictable perioperative myocardial ischaemia-reperfusion injury which is associated with poor clinical outcomes. We determined the occurrence of time-of-the-day variation in perioperative myocardial injury in patients undergoing aortic valve replacement and its molecular mechanisms.
Methods: We studied the incidence of major adverse cardiac events in a prospective observational single-centre cohort study of patients with severe aortic stenosis and preserved left ventricular ejection fraction (>50%) who were referred to our cardiovascular surgery department at Lille University Hospital (Lille, France) for aortic valve replacement and underwent surgery in the morning or afternoon.
Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors.
View Article and Find Full Text PDFNonalcoholic fatty liver disease prevalence is soaring with the obesity pandemic, but the pathogenic mechanisms leading to the progression toward active nonalcoholic steatohepatitis (NASH) and fibrosis, major causes of liver-related death, are poorly defined. To identify key components during the progression toward NASH and fibrosis, we investigated the liver transcriptome in a human cohort of NASH patients. The transition from histologically proven fatty liver to NASH and fibrosis was characterized by gene expression patterns that successively reflected altered functions in metabolism, inflammation, and epithelial-mesenchymal transition.
View Article and Find Full Text PDF