Publications by authors named "Celine Fiorini-Debuisschert"

Over the past 20 years, hybrid plasmonics for nanoemitters of light or for nanoabsorbers, based on weak or strong coupling between metallic nanocavities and active media (emissive or absorbing entities), have given rise to important research efforts. One of the main current challenges is the control of the nanoscale spatial distribution and associated symmetry of the active medium in the vicinity of the metallic nanoparticles. In this review, we first recall the main principles of weak and strong coupling by stressing the importance of controlling the spatial distribution of the active medium and present the main approaches developed for achieving this control.

View Article and Find Full Text PDF

Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO, BTO) NCs attached to a conductive substrate and surrounded by air.

View Article and Find Full Text PDF

The photonic responses of densely packed dye molecule assemblies are strongly dependent on their organization and environment. The precise control of molecular orientations and distances relative to the substrate and to each other is thus a key point in the design of photonic molecular materials. Herein, we report the preparation of a homogeneous and well-organized single monolayer of the perylenediimide (PDI) derivative by means of the Langmuir-Blodgett technique.

View Article and Find Full Text PDF

We compare by Scanning Tunneling Microscopy (STM) self-organized honeycomb monolayers of aromatic molecules formed either on graphite or on graphene. A differential contrast between the adsorption sites observed exclusively on graphite evidences the electronic effects of the symmetry breaking by the staggered atomic layers forming this substrate.

View Article and Find Full Text PDF

Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm to 2.5 mJ cm) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates that using oriented arrays of smectic A defects, termed smectic oily streaks, can effectively orient gold nanorods (GNRs) across a range of sizes and ligands.
  • It was found that increasing the density of small GNRs led to the formation of oriented end-to-end chains, revealing their alignment predominantly along the oily streaks.
  • The research also highlights the electromagnetic coupling of the GNRs, showing that their orientation influences their luminescence and interaction, which is further affected by van der Waals forces and steric repulsion between them.
View Article and Find Full Text PDF

The development of highly selective sensors for potassium is of great interest in biology. Two new hydrosoluble potassium sensors (Calix-COU-Alkyne and Calix-COU-Am) based on a calix[4]arene bis(crown-6) and an extended coumarin were synthesized and characterized. The photophysical properties and complexation studies of these compounds have been investigated and show high molar extinction coefficients and high fluorescence quantum yields.

View Article and Find Full Text PDF

On the basis of our previous work on DNA fluorophores derived from vinylpyridinium-triphenylamine, we explored the structure space around the electron-rich triphenylamine (TP) core by changing the vinyl bond to an oxazole ring. As 2,5-diaryloxazoles are known to be highly fluorescent and efficient two photon absorbers, we synthesized analogues with two different connections of the oxazole to the triphenylamine core: TP-Ox2Py and TP-Ox5Py sets. Since the benzimidazolium group was proven to be more effective in the TP series than the pyridinium, we also synthesized a TP-Ox5Bzim set.

View Article and Find Full Text PDF

Innovative nanostructures made of a high payload of fluorophores and superparamagnetic nanoparticles (NPs) have simply been fabricated upon self-assembling in a two-step process. The resulting hybrid supraparticles displayed a dense shell of iron oxide nanoparticles tightly attached through an appropriate polyelectrolyte to a highly emissive non-doped nanocore made of more than 10 small organic molecules. Cooperative magnetic dipole interactions arose due to the closely packed magnetic NPs at the nanoarchitecture surface, causing enhanced NMR transverse relaxivity.

View Article and Find Full Text PDF

Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent.

View Article and Find Full Text PDF

A general strategy for simultaneously generating surface-based supramolecular architectures on flat sp(2) -hybridized carbon supports and independently exposing on demand off-plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface-confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self-assembly on flat C(sp(2))-based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid-solid interface and molecular mechanics modeling studies.

View Article and Find Full Text PDF

In order to avoid side effects at the time of cancer eradication to the patients, the selectivity of treatments has become of strategic importance. In the case of photodynamic therapy (PDT), two-photon absorption combined with active targeting of tumors could allow both spatial and chemical selectivity. In this context, we present the synthesis, spectroscopic, and biological properties of a series of porphyrin-triphenylamine hybrids with excellent singlet oxygen production capacities and good two-photon absorption.

View Article and Find Full Text PDF

We report on the design and synthesis of two-photon fluorescent triphenylamines bearing two or three vinyl branches terminated by a N-methyl benzimidazolium moiety. The new compounds (TP-2Bzim, TP-3Bzim) are light-up fluorescent DNA probes with a long wavelength emission (>580 nm). Compared to their pyridinium models, the TP-Bzim dyes exhibit a remarkable improvement of both their DNA affinity and fluorescence quantum yield, especially for the two-branch derivative (TP-2Bzim: ΦF = 0.

View Article and Find Full Text PDF

Taking into account substrate crystallographic constraints, an overarching molecular binding motif has been designed to allow transferable self-assembling patterns on different substrates. This optimized clip demonstrates robust and equivalent self-assembled architectures on both highly oriented pyrolitic graphite (HOPG) and reconstructed Au(111) surfaces.

View Article and Find Full Text PDF

On the basis of our previous work on vinyl-triphenylamine derived DNA fluorophores we explored the structure space around this core by coupling it to diverse cationic, anionic and zwitterionic groups in the aim of targeting different classes of biomolecules. In parallel core modifications were performed to optimize the photophysical properties (quantum yield, two-photon absorption). The resulting water soluble π-conjugated molecules are called TP dyes and display an exceptional combination of optical properties: high two-photon absorption cross-section, high photostability, no self-quenching, and switchable fluorescence emission when bound to a biopolymer matrix.

View Article and Find Full Text PDF

Whereas molecular electronics needs well-controlled 3D geometries for decoupling or interconnecting individual molecules, conjugated polymers form disordered structures when deposited on a substrate. We show that this trend can be overcome in polythiophene derivatives designed so as to exploit weak sulfur-bromine interactions. A self-template effect follows, leading to staggered organizations of well-aligned electronically decoupled conjugated strands, as observed in situ by scanning tunneling microscopy and spectroscopy on graphite.

View Article and Find Full Text PDF

The temperature and concentration dependences of the self-assembly onto graphite from solution of a series of molecular building blocks able to form nanoporous structures are analyzed experimentally by in situ scanning tunneling microscopy. It is shown that the commonly observed coexistence of dense and nanoporous domains results from kinetic blockades rather than a thermodynamic equilibrium. The ripening can be favored by high densities of domain boundaries, which can be obtained by cooling the substrate before the nucleation and growth.

View Article and Find Full Text PDF

The synthesis of a novel pi-conjugated trinaphthylamines series is described. These original push-pull octupolar systems exhibit large two-photon action cross section (sigma phi up to 510 GM) increased by a factor of 2-3 as compared to their triphenylamines analogues. This substantial improvement of the two-photon absorption properties is attributed to the stronger donor character of the trinaphthyl core.

View Article and Find Full Text PDF

A versatile synthetic strategy to access a set of highly fluorescent pi-conjugated triphenylamines bearing a functional linker at various positions on one phenyl ring is described. These compounds were designed for large two-photon absorption (2PA) and in particular for labeling of biomolecules. The monoderivatized trisformylated or trisiodinated intermediates described herein allow introduction of a large variety of electron-withdrawing groups required for large 2PA as well as a panel of chemical functions suitable for coupling to biomolecules.

View Article and Find Full Text PDF

The all-optical poling technique permits polar orientation of molecules. For efficient poling of thin films the relative phases, amplitudes, and polarizations of the two interfering beams must be controlled. We present an original stable one-arm interferometer that is specific to the recording of two-color interference.

View Article and Find Full Text PDF

A series of mono-, bis- and trisvinyl-pyridinium triphenylamines (TP-py) has been synthesised and evaluated for its one- and two-photon absorption (2PA) induced-fluorescence properties under biological conditions. Interestingly, these compounds are only weakly fluorescent in water, whereas their fluorescence emissions are strongly restored (exaltation factors of 20-100) upon binding to double-stranded DNA. Additional measurements in glycerol indicate that the fluorescence increases are the result of immobilisation of the dyes in the DNA matrix, which inhibits rotational de-excitation modes.

View Article and Find Full Text PDF

A two-dimensional molecular sieve has been realized. It consists of a host matrix of molecularly engineered building blocks self-assembled at the liquid-solid interface. The simultaneous size- and shape-dependent dynamics of different guest molecules is observed in situ, in real time with submolecular resolution using a scanning tunneling microscope both at the liquid-solid interface and under vacuum.

View Article and Find Full Text PDF

Using the all-optical poling method, we observed the formation of a surface-relief grating (SRG) in an amorphous polymer film containing azo dye molecules in side chain positions. The experiment consists of a seeding-type process. We used a recently described experimental setup that permits a periodic nonlinear pattern to be produced by the index dispersion of glass.

View Article and Find Full Text PDF