Publications by authors named "Celine F Santiago"

Article Synopsis
  • In 2023, the Australian Cardiovascular Alliance and other organizations held a summit to address workforce sustainability in cardiovascular research due to concerns that many researchers were considering leaving the field.
  • Attendees highlighted issues related to well-being, career satisfaction, learning opportunities, and resource distribution as barriers to career advancement in the sector.
  • The summit called for measurable progress tracking, stronger partnerships for advocacy, and a unified strategy for training programs to improve workforce stability and growth in cardiovascular research.
View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a common heart muscle disorder that frequently leads to heart failure, arrhythmias, and death. While DCM is often heritable, disease-causing mutations are identified in only ~30% of cases. In a forward genetic mutagenesis screen, we identified a novel zebrafish mutant, (), characterized by early-onset cardiomyopathy and craniofacial defects.

View Article and Find Full Text PDF

Purpose Of Review: Truncating TTN variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM), but the underlying mechanisms are incompletely understood and effective therapeutic strategies are lacking. Here we review recent data that shed new light on the functional consequences of TTNtv and how these effects may vary with mutation location.

Recent Findings: Whether TTNtv act by haploinsufficiency or dominant negative effects has been hotly debated.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the gene, which encodes the giant sarcomeric protein titin (tv), are the most common genetic cause of DCM, but exactly how tv promote cardiomyocyte dysfunction is not known.

View Article and Find Full Text PDF

Background Truncating variants in the TTN gene ( TTNtv) are common in patients with dilated cardiomyopathy (DCM) but also occur in the general population. Whether TTNtv are sufficient to cause DCM or require a second hit for DCM manifestation is an important clinical issue. Methods We generated a zebrafish model of an A-band TTNtv identified in 2 human DCM families in which early-onset disease appeared to be precipitated by ventricular volume overload.

View Article and Find Full Text PDF

Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions.

View Article and Find Full Text PDF

Genetic variation is an important determinant of atrial fibrillation (AF) susceptibility. Numerous rare variants in protein-coding sequences of genes have been associated with AF in families and in early-onset cases, and chromosomal loci harbouring common risk variants have been mapped in AF cohorts. Many of these loci are in non-coding regions of the human genome and are thought to contain regulatory sequences that modulate gene expression.

View Article and Find Full Text PDF

The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function.

View Article and Find Full Text PDF

The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondi90psf5km6tlf0leprgk7u109k0fvbp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once