Publications by authors named "Celine E Riera"

The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance.

View Article and Find Full Text PDF

Background: Previously, we found low-carbohydrate diets slowed prostate cancer (PC) growth and increased survival vs. a Western diet in mice, by inhibiting the insulin/IGF-1 axis. Thus, we tested whether modifying carbohydrate quality to lower glycemic index (GI) without changing quantity results in similar benefits as with reduced quantity.

View Article and Find Full Text PDF

The pathogenesis of atherosclerosis is defined by impaired lipid handling by macrophages which increases intracellular lipid accumulation. This dysregulation of macrophages triggers the accumulation of apoptotic cells and chronic inflammation which contributes to disease progression. We previously reported that mice with increased macrophage-specific angiotensin-converting enzyme, termed ACE10/10 mice, resist atherosclerosis in an adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-induced model.

View Article and Find Full Text PDF

Olfactory cues are vital for prey animals like rodents to perceive and evade predators. Stress-induced hyperthermia, via brown adipose tissue (BAT) thermogenesis, boosts physical performance and facilitates escape. However, many aspects of this response, including thermogenic control and sex-specific effects, remain enigmatic.

View Article and Find Full Text PDF

The double-stranded RNA-dependent protein kinase activating protein (PACT), an RNA-binding protein that is part of the RNA-induced silencing complex, plays a key role in miR-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RNA-induced silencing complex, and determines proper miR length. Apart from PACT's role in mediating the antiviral response in immune cells, what PACT does in other cell types is unknown.

View Article and Find Full Text PDF

Dopaminergic neuron degeneration in the midbrain plays a pivotal role in motor symptoms associated with Parkinson's disease. However, non-motor symptoms of Parkinson's disease and post-mortem histopathology confirm dysfunction in other brain areas, including the locus coeruleus and its associated neurotransmitter norepinephrine. Here, we investigate the role of central norepinephrine-producing neurons in Parkinson's disease by chronically stimulating catecholaminergic neurons in the locus coeruleus using chemogenetic manipulation.

View Article and Find Full Text PDF

Olfactory perception guides daily decisions regarding food consumption, social interactions, and predator avoidance in all mammalian species. Volatile inputs, comprising odorants and pheromones, are relayed to the olfactory bulb (OB) from nasal sensory neurons cells and transferred to secondary processing regions within the brain. Olfaction has recently been shown to shape homeostatic and maladaptive processes of energy intake and expenditure through neuronal circuits involving the medial basal hypothalamus.

View Article and Find Full Text PDF

Objective: We sought to determine the extent of SARS-CoV-2 seroprevalence and the factors associated with seroprevalence across a diverse cohort of healthcare workers.

Design: Observational cohort study of healthcare workers, including SARS-CoV-2 serology testing and participant questionnaires.

Settings: A multisite healthcare delivery system located in Los Angeles County.

View Article and Find Full Text PDF

Objectives: Heat-sensory neurons from the dorsal root ganglia (DRG) play a pivotal role in detecting the cutaneous temperature and transmission of external signals to the brain, ensuring the maintenance of thermoregulation. However, whether these thermoreceptor neurons contribute to adaptive thermogenesis remains elusive. It is also unknown whether these neurons play a role in obesity and energy metabolism.

View Article and Find Full Text PDF

Objective: Calcitonin Gene-Related Peptide α (CGRPα) is a multifunctional neuropeptide found in the central and peripheral nervous system with cardiovascular, nociceptive, and gastrointestinal activities. CGRPα has been linked to obesity and insulin secretion but the role of this circulating peptide in energy metabolism remains unclear. Here, we thought to utilize a monoclonal antibody against circulating CGRPα to assess its ability to improve glucose homeostasis in mouse models of hyperglycemia and diabetes.

View Article and Find Full Text PDF

The seminal experiments of Ivan Petrovich Pavlov set the stage for an understanding of the physiological concomitants of appetite and feeding behavior. His findings, from careful and creative experimentation, have been uncontested for over a century. One of Pavlov's most fundamental observations was that activation of salivary, gastric and pancreatic secretions during feeding and sham-feeding, precedes entry of food into the mouth, generating signals to the brain from various sensory pathways.

View Article and Find Full Text PDF

Preservation of mitochondrial function, which is dependent on mitochondrial homeostasis (biogenesis, dynamics, disposal/recycling), is critical for maintenance of skeletal muscle function. Skeletal muscle performance declines upon aging (sarcopenia) and is accompanied by decreased mitochondrial function in fast-glycolytic muscles. Oxidative metabolism promotes mitochondrial homeostasis, so we investigated whether mitochondrial function is preserved in oxidative muscles.

View Article and Find Full Text PDF

Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance.

View Article and Find Full Text PDF

Defects in mitochondrial metabolism have been increasingly linked with age-onset protein-misfolding diseases such as Alzheimer's, Parkinson's, and Huntington's. In response to protein-folding stress, compartment-specific unfolded protein responses (UPRs) within the ER, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood.

View Article and Find Full Text PDF

The health of an organism is orchestrated by a multitude of molecular and biochemical networks responsible for ensuring homeostasis within cells and tissues. However, upon aging, a progressive failure in the maintenance of this homeostatic balance occurs in response to a variety of endogenous and environmental stresses, allowing the accumulation of damage, the physiological decline of individual tissues, and susceptibility to diseases. What are the molecular and cellular signaling events that control the aging process and how can this knowledge help design therapeutic strategies to combat age-associated diseases? Here we provide a comprehensive overview of the evolutionarily conserved biological processes that alter the rate of aging and discuss their link to disease prevention and the extension of healthy life span.

View Article and Find Full Text PDF

Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues.

View Article and Find Full Text PDF

The engines that drive the complex process of aging are being identified by model-organism research, thereby providing potential targets and rationale for drug studies. Several studies of small molecules have already been completed in animal models with the hope of finding an elixir for aging, with a few compounds showing early promise. What lessons can we learn from drugs currently being tested, and which pitfalls can we avoid in our search for a therapeutic for aging? Finally, we must also ask whether an elixir for aging would be applicable to everyone, or whether we age differently, thus potentially shortening lifespan in some individuals.

View Article and Find Full Text PDF

FOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C.

View Article and Find Full Text PDF

A hallmark of ageing is dysfunction in nutrient signalling pathways that regulate glucose homeostasis, negatively affecting whole-body energy metabolism and ultimately increasing the organism's susceptibility to disease. Maintenance of insulin sensitivity depends on functional mitochondrial networks, but is compromised by alterations in mitochondrial energy metabolism during ageing. Here we discuss metabolic paradigms that influence mammalian longevity, and highlight recent advances in identifying fundamental signalling pathways that influence metabolic health and ageing through mitochondrial perturbations.

View Article and Find Full Text PDF

The sensation of pain is associated with increased mortality, but it is unknown whether pain perception can directly affect aging. We find that mice lacking TRPV1 pain receptors are long-lived, displaying a youthful metabolic profile at old age. Loss of TRPV1 inactivates a calcium-signaling cascade that ends in the nuclear exclusion of the CREB-regulated transcriptional coactivator CRTC1 within pain sensory neurons originating from the spinal cord.

View Article and Find Full Text PDF

Complex tasting divalent salts (CTDS) are present in our daily diet, contributing to multiple poorly understood taste sensations. CTDS evoking metallic, bitter, salty, and astringent sensations include the divalent salts of iron, zinc, copper, and magnesium. To identify pathways involved with the complex perception of the above salts, taste preference tests (two bottles, brief access) were performed in wild-type (WT) mice and in mice lacking (1) the T1R3 receptor, (2) TRPV1, the capsaicin receptor, or (3) the TRPM5 channel, the latter being necessary for the perception of sweet, bitter, and umami tasting stimuli.

View Article and Find Full Text PDF

Szechuan pepper is widely used in Asia as a spice for its pleasant pungent and tingling sensations, produced by natural alkylamides called sanshools. alpha-Hydroxysanshool, the main alkylamide found in the pericarp of the fruit, stimulates sensory neurons innervating the mouth by targeting two chemosensitive members of the transient receptor potential (TRP) channels, TRPV1 and TRPA1. As it was previously found that configuration of the unsaturations in the alpha-hydroxysanshool alkyl chain is required for TRPA1 but not TRPV1 selectivity, this study aimed at obtaining more potent and selective TRPA1 agonists using alpha-hydroxysanshool as a starting material.

View Article and Find Full Text PDF