Publications by authors named "Celine Ducournau"

Background: Metastases are the leading cause of mortality in many cancer types and lungs are one of the most common sites of metastasis alongside the liver, brain, and bones. In melanoma, 85% of late-stage patients harbor lung metastases. A local administration could enhance the targeting of metastases while limiting the systemic cytotoxicity.

View Article and Find Full Text PDF

Squirrel monkeys (Saimiri spp.), new world primates from South America, are very susceptible to toxoplasmosis. Numerous outbreaks of fatal toxoplasmosis in zoos have been identified around the world, resulting in acute respiratory distress and sudden death.

View Article and Find Full Text PDF

Neospora caninum causes abortion in ruminants, leading to important economic losses and no efficient treatment or vaccine against neosporosis is available. Considering the complexity of the strategies developed by intracellular apicomplexan parasites to escape immune system, future vaccine formulations should associate the largest panel of antigens and adjuvants able to better stimulate immune responses than natural infection. A mucosal vaccine, constituted of di-palmitoyl phosphatidyl glycerol-loaded nanoparticles (DGNP) and total extract (TE) of soluble antigens of Toxoplasma gondii, has demonstrated its efficacy, decreasing drastically the parasite burden.

View Article and Find Full Text PDF

Background: Microorganisms that can be used for their lytic activity against tumor cells as well as inducing or reactivating antitumor immune responses are a relevant part of the available immunotherapy strategies. Viruses, bacteria and even protozoa have been largely explored with success as effective human antitumor agents. To date, only one oncolytic virus-T-VEC-has been approved by the US Food and Drug Administration for use in biological cancer therapy in clinical trials.

View Article and Find Full Text PDF

is a parasitic protozoan of worldwide distribution, able to infect all warm-blooded animals, but particularly sheep. Primary infection in pregnant sheep leads to millions of abortions and significant economic losses for the livestock industry. Moreover, infected animals constitute the main parasitic reservoir for humans.

View Article and Find Full Text PDF

Glycosylphosphatidylinositols (GPIs) are glycolipids described as toxins of protozoan parasites due to their inflammatory properties in mammalian hosts characterized by the production of interleukin (IL)-1, IL-12 and tumor necrosis factor (TNF)-α. In the present work, we studied the cytokines produced by antigen presenting cells in response to ten different GPI species extracted from Babesia divergens, responsible for babesiosis. Interestingly, B.

View Article and Find Full Text PDF

Different types of biodegradable nanoparticles (NPs) have been studied as delivery systems for proteins into nasal mucosal cells, especially for vaccine applications. Such a nanocarrier must have the ability to be loaded with proteins and to transport this payload into mucosal cells. However, comparative data on nanoparticles' capacity for protein loading, efficiency of subsequent endocytosis and the quantity of nanocarriers used are either lacking or contradictory, making comparisons and the choice of a best candidate difficult.

View Article and Find Full Text PDF

Neosporosis due to Neospora caninum causes abortions in farm animals such as cattle. No treatment and vaccine exist to fight this disease, responsible for considerable economic losses. It is thus important to better understand the immune responses occurring during the pathogenesis to control them in a global strategy against the parasite.

View Article and Find Full Text PDF

Different types of biodegradable nanoparticles (NP) have been studied as nasal mucosa cell delivery systems. These nanoparticles need to strongly interact with mucosa cells to deliver their payload. However, only a few simultaneous comparisons have been made and it is therefore difficult to determine the best candidate.

View Article and Find Full Text PDF

Aim: Development of protein vaccine to prevent congenital infection is a major public health priority. Our goal is the design of mucosal synthetic pathogen inducing protective immune responses against congenital toxoplasmosis.

Materials & Methods: Mice were immunized intranasally, establishing pregnancy and challenging orally.

View Article and Find Full Text PDF

Development of sub-unit mucosal vaccines requires the use of specific delivery systems or immune-modulators such as adjuvants to improve antigen immunogenicity. Nasal route for vaccine delivery by nanoparticles has attracted much interest but mechanisms triggering effective mucosal and systemic immune response are still poorly understood. Here we study the loading of porous nanoparticles (DGNP) with a total extract of Toxoplasma gondii antigens (TE), the delivery of TE by DGNP into airway epithelial, macrophage and dendritic cells, and the subsequent cellular activation.

View Article and Find Full Text PDF

Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite.

View Article and Find Full Text PDF

This study assessed the effectiveness of a mutant strain of Toxoplasma gondii (RH strain) lacking the mic1 and mic3 genes (Mic1-3KO) against Toxoplasma abortion in sheep. Ewes were inoculated subcutaneously with 10(5) Mic1-3KO tachyzoïtes in three independent experiments. Following vaccination, Mic1-3KO induced a mild febrile response and serum IgG antibodies, which persisted throughout the experiments.

View Article and Find Full Text PDF