Adv Neurobiol
December 2017
Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58-71, 2015).
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2017
Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium.
View Article and Find Full Text PDFThe brain is a target of environmental toxic pollutants that impair cerebral functions. Uranium is present in the environment as a result of natural deposits and release by human applications. The first part of this review describes the passage of uranium into the brain, and its effects on neurological functions and cognitive abilities.
View Article and Find Full Text PDFWe report data on the neuronal form, synaptic connectivity, neuronal excitability and epileptiform population activities generated by the hippocampus of animals with an inactivated doublecortin gene. The protein product of this gene affects neuronal migration during development. Human doublecortin (DCX) mutations are associated with lissencephaly, subcortical band heterotopia, and syndromes of intellectual disability and epilepsy.
View Article and Find Full Text PDFPurpose: Epilepsy is a significant long-term consequence of traumatic brain injury (TBI) and is likely to result from multiple mechanisms. One feature that is common to many forms of TBI is denervation. We asked whether chronic partial denervation in vivo would lead to a homeostatic increase in the excitability of a denervated cell population.
View Article and Find Full Text PDFMutations of the LGI1 (leucine-rich, glioma-inactivated 1) gene underlie autosomal dominant lateral temporal lobe epilepsy, a focal idiopathic inherited epilepsy syndrome. The LGI1 gene encodes a protein secreted by neurons, one of the only non-ion channel genes implicated in idiopathic familial epilepsy. While mutations probably result in a loss of function, the role of LGI1 in the pathophysiology of epilepsy remains unclear.
View Article and Find Full Text PDFGlickfeld and colleagues (2009) suggested that single hippocampal interneurones generate field potentials at monosynaptic latencies. We pursued this observation in simultaneous intracellular and multiple extracellular records from the CA3 region of rat hippocampal slices. We confirmed that interneurones evoked field potentials at monosynaptic latencies.
View Article and Find Full Text PDFPresubicular neurons are activated physiologically by a specific preferred head direction. Here we show that firing in these neurones is characterized by action potentials with a large overshoot and a reduced firing frequency adaptation during repetitive firing. We found that a component of the sodium current of presubicular cells was not abolished by tetrodotoxin (TTX, 10 mum) and was activated at more depolarized voltages than TTX-sensitive currents.
View Article and Find Full Text PDFPatients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures.
View Article and Find Full Text PDFPenetrating head injuries are often accompanied by the delayed development of post-traumatic epilepsy. Schaffer collateral transection leads to axonal sprouting and hyperexcitability in area CA3 of hippocampal slice cultures. We used this model to test the hypothesis that the injury-induced axonal sprouting results from increased neurotrophin signaling via trkB receptors near the lesion.
View Article and Find Full Text PDFIn the pilocarpine model of chronic limbic seizures, vulnerability of GABAergic interneurons to excitotoxic damage has been reported in the hippocampal CA1 region. However, little is known about the specific types of interneurons that degenerate in this region. In order to characterize these interneurons, we performed quantitative analyses of the different populations of GABAergic neurons labeled for their peptide or calcium-binding protein content.
View Article and Find Full Text PDF