Publications by authors named "Celine Cohn"

Antibody immobilization and function retention are important to a variety of applications, including proteomics, drug discovery, diagnostics, and biosensors. The present study investigates antibody immobilization mediated by cholesteryl succinyl silane (CSS) fibers, in comparison to hydrophobic polycaprolactone (PCL) fibers and hydrophilic plasma-treated PCL fibers. When incubated with a model protein, the formation of protein aggregates is observed on hydrophobic PCL fibers but not on the more hydrophobic CSS fibers, indicating that CSS fibers immobilize proteins through mechanisms other than hydrophobic interaction.

View Article and Find Full Text PDF

Chemical conjugation of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs) to organic-inorganic hybrid liposomal immunocerasomes via maleimide-thiol coupling chemistry is explored as a mechanism for selectively targeting cancer cells. The cellular uptake and internalization of immunocerasomes are investigated in A431 cells that express an abnormally high level of EGFR, DU145 cells that overexpress EGFR, and HL-60 cells that are used as a negative control. The internalization study reveals a strong correlation between the receptor-mediated endocytosis of immunocerasomes and the membrane expression of EGFR.

View Article and Find Full Text PDF

An organic-inorganic hybridization strategy has been proposed to synthesize polymerizable lipid-based materials for the creation of highly stable lipid-mimetic nanostructures. We employ atomic force microscopy (AFM) to analyze the surface morphology and mechanical property of electrospun cholesteryl-succinyl silane (CSS) nanofibers. The AFM nanoindentation of the CSS nanofibers reveals elastic moduli of 55.

View Article and Find Full Text PDF

Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silk-elastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1uufugif8g2qur6v18a5ihgfp5ou81lc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once