Previous patient-centered concept models of Angelman syndrome (AS) are integral in developing our understanding of the symptoms and impact of this condition with a holistic perspective and have highlighted the importance of motor function. We aimed to develop the motor and movement aspects of the concept models, to support research regarding motor-related digital outcomes aligned with patients' and caregivers' perspectives. We conducted a qualitative analysis of semi-structured interviews of 24 caregivers to explore AS motor-related features, factors influencing them and their impact on patients and caregivers.
View Article and Find Full Text PDFNiemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function.
View Article and Find Full Text PDFNiemann-Pick disease type C1 (NPC1) is a rare autosomal recessive lysosomal storage disease primarily caused by mutations in NPC1 is characterized by abnormal accumulation of unesterified cholesterol and glycolipids in late endosomes and lysosomes. Common signs include neonatal jaundice, hepatosplenomegaly, cerebellar ataxia, seizures and cognitive decline. Both mouse and feline models of NPC1 mimic the disease progression in humans and have been used in preclinical studies of 2-hydroxypropyl-β-cyclodextrin (2HPβCD; VTS-270), a drug that appeared to slow neurological progression in a Phase 1/2 clinical trial.
View Article and Find Full Text PDFBackground: Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes.
View Article and Find Full Text PDFNiemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood.
View Article and Find Full Text PDFSmith-Lemli-Opitz syndrome (SLOS) is a malformation disorder caused by mutations in DHCR7, which impair the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. SLOS results in cognitive impairment, behavioral abnormalities and nervous system defects, though neither affected cell types nor impaired signaling pathways are fully understood. Whether 7DHC accumulation or cholesterol loss is primarily responsible for disease pathogenesis is also unclear.
View Article and Find Full Text PDFNiemann-Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients.
View Article and Find Full Text PDFNiemann-Pick disease, type C1 (NPC1) is a fatal, neurodegenerative disorder for which there is no definitive therapy. In NPC1, a pathological cascade including neuroinflammation, oxidative stress and neuronal apoptosis likely contribute to the clinical phenotype. While the genetic cause of NPC1 is known, we sought to gain a further understanding into the pathophysiology by identifying differentially expressed proteins in Npc1 mutant mouse cerebella.
View Article and Find Full Text PDFNiemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease.
View Article and Find Full Text PDFBackground: Generalized pustular psoriasis is a life-threatening disease of unknown cause. It is characterized by sudden, repeated episodes of high-grade fever, generalized rash, and disseminated pustules, with hyperleukocytosis and elevated serum levels of C-reactive protein, which may be associated with plaque-type psoriasis.
Methods: We performed homozygosity mapping and direct sequencing in nine Tunisian multiplex families with autosomal recessive generalized pustular psoriasis.
Hypohidrotic and anhidrotic ectodermal dysplasia (HED/EDA) is a rare genodermatosis characterized by abnormal development of sweat glands, teeth, and hair. Three disease-causing genes have been hitherto identified, namely, (1) EDA1 accounting for X-linked forms, (2) EDAR, and (3) EDARADD, causing both autosomal dominant and recessive forms. Recently, WNT10A gene was identified as responsible for various autosomal recessive forms of ectodermal dysplasias, including onycho-odonto-dermal dysplasia (OODD) and Schöpf-Schulz-Passarge syndrome.
View Article and Find Full Text PDFWe report on an 18-year-old woman, born to first-cousin parents, presenting with a severe form of anhydrotic ectodermal dysplasia (EDA/HED). She had sparse hair, absent limb hair, absent sweating, episodes of hyperpyrexia, important hypodontia, and hyperconvex nails. She also showed unusual clinical manifestations such as an absence of breasts, a rudimentary extranumerary areola and nipple on the left side, and marked palmo-plantar hyperkeratosis.
View Article and Find Full Text PDFCornelia de Lange syndrome (CdLS; also called Brachmann de Lange syndrome) is a developmental disorder characterized by typical facial dysmorphism, growth and mental retardation, microcephaly, and various malformations. Mutations in the NIPBL gene have been identified in approximately 40% of reported cases, suggesting either genetic heterogeneity or that some NIPBL mutations are not detected by current screening strategies. We screened a cohort of 21 patients with no previously identified NIPBL anomaly for mutations in the 5' untranslated region (5'UTR) and the proximal promoter of the NIPBL gene.
View Article and Find Full Text PDF