Previous in vitro studies on primary osteoblastic and osteosarcoma cells (normal and transformed osteoblasts) have shown that oncostatin M (OSM), a member of the interleukin-6 family, possesses cytostatic and pro-apoptotic effects in association with complex and poorly understood activities on osteoblast differentiation. In this study, we use rat osteosarcoma cells transduced with lentiviral particles encoding OSM (lvOSM) to stably produce this cytokine. We show that after several weeks of culture, transduced OSRGA and ROS 17/2.
View Article and Find Full Text PDFPurpose: In cultures, the cytokine oncostatin M (OSM) reduces the growth and induces differentiation of osteoblasts and osteosarcoma cells into glial/osteocytic cells. Moreover, OSM sensitizes these cells to apoptosis driven by various death inducers such as the kinase inhibitor staurosporine. Here, we asked whether OSM would have similar effects in vivo.
View Article and Find Full Text PDFDrug Discov Today
February 2005
Histone deacetylase (HDAC) inhibitors induce cell cycle arrest and differentiation in cancer cells and have been in Phase I-II clinical trials for the treatment of various solid or haematological malignancies. In recent years, HDAC inhibitors have emerged as potent contenders for anti-inflammatory drugs, offering new lines of therapeutic intervention for rheumatoid arthritis or lupus erythematosus. The molecular mode of action of HDAC inhibitors is still controversial but seems to rely on reduced inflammatory mediator production, such as nitric oxide or cytokines, which implies inhibition of the transcription factor NF-kappaB.
View Article and Find Full Text PDFUnlabelled: The effects of OSM on proliferation and differentiation of osteosarcoma and nontransformed osteoblasts were analyzed. OSM downregulates osteoblast markers but induces the glial fibrillary acidic protein by the combined activation of PKCdelta and STAT3, offering new lines of therapeutic investigations.
Introduction: Oncostatin M (OSM) is a multifunctional cytokine of the interleukin-6 family implicated in embryonic development, differentiation, inflammation, and regeneration of various tissues, mainly the liver, bone, and the central nervous and hematopoietic systems.