Publications by authors named "Celine Carret"

A multi-person interview on the unrolling corona pandemic with Samuel Alizon, Akiko Iwasaki, Gerard Krause and Rino Rappuoli.

View Article and Find Full Text PDF

The relevance of genetic factors in conferring protection to severe malaria has been demonstrated, as in the case of sickle cell trait and G6PD deficiency . However, it remains unknown whether environmental components, such as dietary or metabolic variations, can contribute to the outcome of infection . Here, we show that administration of a high-fat diet to mice for a period as short as 4 days impairs Plasmodium liver infection by over 90%.

View Article and Find Full Text PDF

Background: Transmission of the malaria parasite Plasmodium falciparum from humans to the mosquito vector requires differentiation of a sub-population of asexual forms replicating within red blood cells into non-dividing male and female gametocytes. The nature of the molecular mechanism underlying this key differentiation event required for malaria transmission is not fully understood.

Methods: Whole genome sequencing was used to examine the genomic diversity of the gametocyte non-producing 3D7-derived lines F12 and A4.

View Article and Find Full Text PDF

Background: Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH.

View Article and Find Full Text PDF

These are exciting times for translational medicine as the convergence between fundamental and clinical research comes of age. The new EMBO Press publishing platform reinforces the standing of EMBO Molecular Medicine as the journal that matches high quality, novel research with rigorous editorial and ethical standards. It will also cement the journal's global reach and relevance - whether in highly active fields or explorative forays into emerging areas.

View Article and Find Full Text PDF

Before they infect red blood cells and cause malaria, Plasmodium parasites undergo an obligate and clinically silent expansion phase in the liver that is supposedly undetected by the host. Here, we demonstrate the engagement of a type I interferon (IFN) response during Plasmodium replication in the liver. We identified Plasmodium RNA as a previously unrecognized pathogen-associated molecular pattern (PAMP) capable of activating a type I IFN response via the cytosolic pattern recognition receptor Mda5.

View Article and Find Full Text PDF

The combination therapy of the Artemisinin-derivative Artemether (ART) with Lumefantrine (LM) (Coartem®) is an important malaria treatment regimen in many endemic countries. Resistance to Artemisinin has already been reported, and it is feared that LM resistance (LMR) could also evolve quickly. Therefore molecular markers which can be used to track Coartem® efficacy are urgently needed.

View Article and Find Full Text PDF

Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host.

View Article and Find Full Text PDF

In regions of high rates of malaria transmission, mosquitoes repeatedly transmit liver-tropic Plasmodium sporozoites to individuals who already have blood-stage parasitemia. This manifests itself in semi-immune children (who have been exposed since birth to Plasmodium infection and as such show low levels of peripheral parasitemia but can still be infected) older than 5 years of age by concurrent carriage of different parasite genotypes at low asymptomatic parasitemias. Superinfection presents an increased risk of hyperparasitemia and death in less immune individuals but counterintuitively is not frequently observed in the young.

View Article and Find Full Text PDF

A universal feature of metazoan sexual development is the generation of oocyte P granules that withhold certain mRNA species from translation to provide coding potential for proteins during early post-fertilization development. Stabilisation of translationally quiescent mRNA pools in female Plasmodium gametocytes depends on the RNA helicase DOZI, but the molecular machinery involved in the silencing of transcripts in these protozoans is unknown. Using affinity purification coupled with mass-spectrometric analysis we identify a messenger ribonucleoprotein (mRNP) from Plasmodium berghei gametocytes defined by DOZI and the Sm-like factor CITH (homolog of worm CAR-I and fly Trailer Hitch).

View Article and Find Full Text PDF

Unlabelled: Array-based comparative genomic hybridization (CGH) technology is used to discover and validate genomic structural variation, including copy number variants, insertions, deletions and other structural variants (SVs). The visualization and summarization of the array CGH data outputs, potentially across many samples, is an important process in the identification and analysis of SVs. We have developed a software tool for SV analysis using data from array CGH technologies, which is also amenable to short-read sequence data.

View Article and Find Full Text PDF

Background: Gene copy number variation (CNV) is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome.

Results: We performed a whole-genome survey of CNV genes in P.

View Article and Find Full Text PDF

Background: Plasmodium sporozoites migrate to the liver where they traverse several hepatocytes before invading the one inside which they will develop and multiply into thousands of merozoites. Although this constitutes an essential step of malaria infection, the requirements of Plasmodium parasites in liver cells and how they use the host cell for their own survival and development are poorly understood.

Results: To gain new insights into the molecular host-parasite interactions that take place during malaria liver infection, we have used high-throughput microarray technology to determine the transcriptional profile of P.

View Article and Find Full Text PDF

Cytoadherance of Plasmodium falciparum-infected erythrocytes in the brain, organs and peripheral microvasculature is linked to morbidity and mortality associated with severe malaria. Parasite-derived P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules displayed on the erythrocyte surface are responsible for cytoadherance and undergo antigenic variation in the course of an infection.

View Article and Find Full Text PDF

The Plasmodium falciparum var multigene family encodes P. falciparum erythrocyte membrane protein 1, which is responsible for the pathogenic traits of antigenic variation and adhesion of infected erythrocytes to host receptors during malaria infection. Clonal antigenic variation of P.

View Article and Find Full Text PDF

We have cultured Plasmodium falciparum directly from the blood of infected individuals to examine patterns of mature-stage gene expression in patient isolates. Analysis of the transcriptome of P. falciparum is complicated by the highly periodic nature of gene expression because small variations in the stage of parasite development between samples can lead to an apparent difference in gene expression values.

View Article and Find Full Text PDF

The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir) suggesting tight transcriptional control at the level of individual cells.

View Article and Find Full Text PDF

Plasmodium sporozoites, the causative agent of malaria, are injected into their vertebrate host through the bite of an infected Anopheles mosquito, homing to the liver where they invade hepatocytes to proliferate and develop into merozoites that, upon reaching the bloodstream, give rise to the clinical phase of infection. To investigate how host cell signal transduction pathways affect hepatocyte infection, we used RNAi to systematically test the entire kinome and associated genes in human Huh7 hepatoma cells for their potential roles during infection by P. berghei sporozoites.

View Article and Find Full Text PDF

Rab genes encode a subgroup of small GTP-binding proteins within the ras super-family that regulate targeting and fusion of transport vesicles within the secretory and endocytic pathways. These genes are of particular interest in the protozoan phylum Apicomplexa, since a family of Rab GTPases has been described for Plasmodium and most putative secretory pathway proteins in Apicomplexa have conventional predicted signal peptides. Moreover, peptide motifs have now been identified within a large number of secreted Plasmodium proteins that direct their targeting to the red blood cell cytosol, the apicoplast, the food vacuole and Maurer's clefs; in contrast, motifs that direct proteins to secretory organelles (rhoptries, micronemes and microspheres) have yet to be defined.

View Article and Find Full Text PDF

We undertook a genome-wide search for novel noncoding RNAs (ncRNA) in the malaria parasite Plasmodium falciparum. We used the RNAz program to predict structures in the noncoding regions of the P. falciparum 3D7 genome that were conserved with at least one of seven other Plasmodium spp.

View Article and Find Full Text PDF

The molecular mechanisms whereby the CD45 tyrosine phosphatase (PTPase) regulates T cell receptor (TCR) signaling responses remain to be elucidated. To investigate this question, we have reconstituted CD45 (encoded by Ptprc)-deficient mice, which display severe defects in thymic development, with five different expression levels of transgenic CD45RO, or with mutant PTPase null or PTPase-low CD45R0. Whereas CD45 PTPase activity was absolutely required for the reconstitution of thymic development, only 3% of wild-type CD45 activity restored T cell numbers and normal cytotoxic T cell responses.

View Article and Find Full Text PDF

The process of erythrocyte invasion by merozoites of Plasmodium falciparum involves multiple steps, including the formation of a moving junction between parasite and host cell, and it is characterised by the redundancy of many of the receptor-ligand interactions involved. Several parasite proteins that interact with erythrocyte receptors or participate in other steps of invasion are encoded by small subtelomerically located gene families of four to seven members. We report here that members of the eba, rhoph1/clag, acbp, and pfRh multigene families exist in either an active or a silenced state.

View Article and Find Full Text PDF

Severe malaria is associated with sequestration of Plasmodium falciparum-infected red blood cells (PRBC) in the microvasculature and elevation of intercellular adhesion molecule-1 (ICAM-1) and TNF. In vitro co-culture of human umbilical vein endothelial cells (HUVEC), with either PRBC or uninfected RBC, required the presence of low level TNF (5pg/ml) for significant up-regulation of ICAM-1, which may contribute to increased cytoadhesion in vivo. These effects were independent of P.

View Article and Find Full Text PDF

Microarray-based comparative genomic hybridization (CGH) provides a powerful tool for whole genome analyses and the rapid detection of genomic variation that underlies virulence and disease. In the field of Plasmodium research, many of the parasite genomes that one might wish to study in a high throughput manner are not laboratory clones, but clinical isolates. One of the key limitations to the use of clinical samples in CGH, however, is the miniscule amounts of genomic DNA available.

View Article and Find Full Text PDF