Proc Natl Acad Sci U S A
August 2022
In the mammalian olfactory system, cross-talk between olfactory signals is minimized through physical isolation: individual neurons express one or few olfactory receptors among those encoded in the genome. Physical isolation allows for segregation of stimuli during signal transduction; however, in the nematode worm , ∼1,300 olfactory receptors are primarily expressed in only 32 neurons, precluding this strategy. Here, we report genetic and behavioral evidence that β-arrestin-mediated desensitization of olfactory receptors, working downstream of the kinase GRK-1, enables discrimination between intraneuronal olfactory stimuli.
View Article and Find Full Text PDFBackground: Monocytes are myeloid cells that reside in the blood and bone marrow and respond to inflammation. At the site of inflammation, monocytes express cytokines and chemokines. Monocytes have been shown to be cytotoxic to tumor cells in the presence of pro-inflammatory cytokines such as Interferon Alpha, Interferon Gamma, and IL-6.
View Article and Find Full Text PDFHigher-order conditioning phenomena, including context conditioning and blocking, occur when conditioning to one set of stimuli interacts with conditioning to a second set of stimuli to modulate the strength of the resultant memories. Here we analyze higher-order conditioning in the nematode worm Caenorhabditis elegans, demonstrating for the first time the presence of blocking in this animal, and dissociating it from context conditioning. We present an initial genetic dissection of these phenomena in a model benzaldehyde/NHCl aversive learning system, and suggest that blocking may involve an alteration of memory retrieval rather than storage.
View Article and Find Full Text PDF