In this work, we described an system adequate for investigating the pathosystem soybean/arbuscular mycorrhizal fungi (AMF)/ Pre-mycorrhized plantlets with were infected by either locally via a plug of gel supporting mycelium (Method 1) or via a macroconidia suspension applied to the medium surface (Method 2). Root colonization by the AMF and infection by the pathogen were similar to the usual observations in pot experiments. Within a period of 18 days, more than 20% of the roots were colonized by the AMF and infection by the pathogen was observed in all the plants.
View Article and Find Full Text PDFOxidative stress responses generated by paraquat (PQ), an herbicide that triggers an oxidative stress reaction in leaves, were studied in non-arbuscular mycorrhizal (non-AM) and in arbuscular mycorrhizal (AM) soybean plants inoculated with Glomus mosseae (Gm) or Glomus intraradices (Gi). Some oxidative stress symptoms were evident in non-AM after 6 d of PQ application on leaves. Oxidative damage, measured as malondialdehyde content (MDA), was significantly higher, and although no changes were evident in total catalase (CAT, EC 1.
View Article and Find Full Text PDFThe aim of the present study was to provide useful background information and evidence of the functionality of the maize Activator/Dissociation (Ac/Ds) system in hexaploid wheat. Two transgenic parental wheat lines, one harbouring the immobilised Ac element (iAc) and the other the Ds element (pUbi[Ds-uidA]bar), were crossed. Transient GUS assays confirmed that the iAc transposase is active in hexaploid wheat.
View Article and Find Full Text PDFPlants co-ordinate information derived from many diverse external and internal signals to ensure appropriate control of gene expression under optimal and stress conditions. In this work, the relationships between catalase (CAT) and H2O2 during drought in wheat (Triticum aestivum L.) are studied.
View Article and Find Full Text PDF