In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the incorporation of nanocelluloses-initially obtained as aqueous suspensions-into melt compounding processes, and also with achieving a proper dispersion of the hydrophilic nanofillers within PLA, three different nanofibrils incorporation strategies were studied: i.e.
View Article and Find Full Text PDFNatural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1-5 wt% henequen flour comprising particles with sizes between 90-250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests.
View Article and Find Full Text PDFReplacing packaging plastics with biodegradable active materials is an emerging concern. In this context, thermoplastic starch (TPS) films and nanocomposites containing different concentrations of silver nanoparticles synthetized with starch and yerba mate (TPS-AgNP: 0.006 wt.
View Article and Find Full Text PDFPolylactic acid (PLA) films containing 1 wt % and 3 wt % of lignin nanoparticles (pristine (LNP), chemically modified with citric acid (caLNP) and acetylated (aLNP)) were prepared by extrusion and characterized in terms of their overall performance as food packaging materials. Morphological, mechanical, thermal, UV-Vis barrier, antioxidant and antibacterial properties were assayed; appropriate migration values in food simulants and disintegration in simulated composting conditions were also verified. The results obtained indicated that all lignin nanoparticles succeeded in conferring UV-blocking, antioxidant and antibacterial properties to the PLA films, especially at the higher filler loadings assayed.
View Article and Find Full Text PDFNative or hydrolyzed starch and yerba mate extract (10 wt.% or 20 wt.%) films prepared by extrusion and compression molding were investigated.
View Article and Find Full Text PDFActive and smart biodegradable films from cassava starch and glycerol with 5wt.% of different natural extracts such as green tea and basil were obtained by casting. Their functional capacity as antioxidants and their physicochemical properties achieved from the incorporation of these types of extracts were evaluated.
View Article and Find Full Text PDFBiodegradable and edible cassava starch-glycerol based films with different concentrations of yerba mate extract (0, 5 and 20wt.%) were prepared by casting. The plasticizing effect of yerba mate extract when it was incorporated into the matrix as an antioxidant was investigated.
View Article and Find Full Text PDF