Previously, boost and sag effects seen in unfused tetanic contractions have been studied exclusively at constant stimulation frequency. However, intervals between successive discharges of motoneurons vary during voluntary movements. We therefore aimed to test whether the extra-efficient force production at the onset of contraction (boost) occurs during stimulation with variable intervals, and to what extent it depends on the level of interpulse interval (IPI) variability and history of stimulation.
View Article and Find Full Text PDFTemperature has a significant impact on the performance of the neuromuscular system and motor control processes. The smallest functional components of these systems are motor units (MUs), which may differ significantly between different muscles. The influence of temperature on the contractile properties of slow-twitch (S) MUs from soleus (SOL) muscles in rats was investigated under hypothermia (25 °C), normothermia (37 °C), and hyperthermia (41 °C).
View Article and Find Full Text PDFBackground: Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats.
Methods And Results: Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs.
Male and female rats differ in muscle fibre composition, related motor unit contractile properties, and muscle spindle density but not number. On the other hand, their motoneurons' intrinsic properties, excitability and firing properties are similar. The aim of this study was to investigate whether apparent sex differences in body mass and muscle force influence the proprioceptive input from muscle spindles to motoneurons.
View Article and Find Full Text PDFThe spatial distribution of the medial gastrocnemius muscle spindles of 10 male and 10 female rats was analysed under a light microscope, and for the first time, visualised using a 3D model of the muscle. Serial cross-sections of the medial gastrocnemius muscles were separated into 10 divisions along with the proximo-distal axis. The muscle spindles of the rat medial gastrocnemius were predominantly distributed on the proximo-medial divisions of the muscle.
View Article and Find Full Text PDFThe mathematical muscle models should include several aspects of muscle structure and physiology. First, muscle force is the sum of forces of multiple motor units (MUs), which have different contractile properties and play different roles in generating muscle force. Second, whole muscle activity is an effect of net excitatory inputs to a pool of motoneurons innervating the muscle, which have different excitability, influencing MU recruitment.
View Article and Find Full Text PDFJ Electromyogr Kinesiol
February 2023
The effects of hypothermia and hyperthermia on mammalian skeletal muscle function have previously been reported. However, their effects on the contractile properties of different motor unit (MU) types were not described. This study aimed to explore the effect of temperature on contractile properties of MUs in rat medial gastrocnemius kept at 25 °C (hypothermia), 37 °C (normothermia), and 41 °C (hyperthermia).
View Article and Find Full Text PDFSeveral studies have reported differences in the morphological characteristics of motoneurons and the contractile properties of motor units of male and female rats. However, differences in spinal motoneuron activity between the sexes are not well understood. This study investigates the electrophysiological properties of spinal α-motoneurons in male and female Wistar rats under pentobarbital anaesthesia.
View Article and Find Full Text PDFStudies suggest that carnosine (beta-alanyl-L-histidine) is effective in treating neuromuscular diseases associated with aging, but there is still a need to clarify its role in motor units (MUs) function during aging. In this study, 40 male Wistar rats aged 15 months were randomly assigned to a control or to two experimental groups in which 0.1% carnosine supplementation was performed for 10 or 34 weeks.
View Article and Find Full Text PDFSkeletal muscles are an important reservoir of nitric oxide (NO) stored in the form of nitrite [NO] and nitrate [NO] (NO). Nitrite, which can be reduced to NO under hypoxic and acidotic conditions, is considered a physiologically relevant, direct source of bioactive NO. The aim of the present study was to determine the basal levels of NO in striated muscles (including rat heart and locomotory muscles) with varied contents of tissue nitrite reductases, such as myoglobin and mitochondrial electron transport chain proteins (ETC-proteins).
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2022
Whole body vibration (WBV) is often applied as an alternative method for strength training or to prevent muscle force decrease. In this study, we evaluated the influence of WBV on Ia monosynaptic input from muscle spindles because the tonic vibration reflex is responsible for the enhancement of muscle activity observed after WBV. The aim was to investigate whether repeated activation of muscle spindles during WBV may result in altered synaptic excitation of motoneurons.
View Article and Find Full Text PDFThis study sought to investigate the sexual dimorphism of muscle spindles in rat medial gastrocnemius muscle. The muscles were cut transversely into 5-10 and 20 μm thick serial sections and the number, density, and morphometric properties of the muscle spindles were determined. There was no significant difference ( > 0.
View Article and Find Full Text PDFAdropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse.
View Article and Find Full Text PDFPost-tetanic potentiation (PTP) of force depends on intramuscular Ca levels and sensitivity and may be affected by fatigue. The aim of this study was to determine the ability of isolated fast fatigue-resistant (FR) and fast-fatigable (FF) motor units (MUs) to potentiate force evoked with single and 40-Hz electrical stimulation after 5 weeks of voluntary weight-lifting training. Tetanic contractions evoked by gradually increasing (10-150 Hz) stimulation frequency served as conditioning stimulation.
View Article and Find Full Text PDFThe synchronized firings of active motor units (MUs) increase the oscillations of muscle force, observed as physiological tremor. This study aimed to investigate the effects of synchronizing the firings within three types of MUs (slow-S, fast resistant to fatigue-FR, and fast fatigable-FF) on the muscle force production using a mathematical model of the rat medial gastrocnemius muscle. The model was designed based on the actual proportion and physiological properties of MUs and motoneurons innervating the muscle.
View Article and Find Full Text PDFThis work outlines functional isolation of motor units (MUs), a standard electrophysiological method for determining characteristics of motor units in hindlimb muscles (such as the medial gastrocnemius, soleus, or plantaris muscle) in experimental rats. A crucial element of the method is the application of electrical stimuli delivered to a motor axon isolated from the ventral root. The stimuli may be delivered at constant or variable inter-pulse intervals.
View Article and Find Full Text PDFPurpose: A period of extra-efficient force production ("boost") followed by a decline in force ("sag") is often observed at the onset of unfused tetanic contractions. We tested the hypothesis that in human muscle boost and sag are diminished in repeated contractions separated by short rest periods and are re-established or enhanced following long rest periods.
Methods: Two sets of 3 unfused tetanic contractions were evoked in the right quadriceps muscle group of 29 participants via percutaneous stimulation of the femoral nerve.
Background: The biomechanical background of the transitory force decrease following a sudden reduction in the stimulation frequency under selected experimental conditions was studied on fast resistant motor units (MUs) of rat medial gastrocnemius in order to better understand the mechanisms of changes in force transmission.
Methods: Firstly, MUs were stimulated with three-phase trains of stimuli (low-high-low frequency pattern) to identify patterns when the strongest force decrease (3-36.5%) following the middle high frequency stimulation was observed.
Unfused tetanic contractions evoked in fast motor units exhibit extra-efficient force production at the onset of contraction, an effect called "boost". Boost is diminished in subsequent contractions if there is a short rest period between contractions, but can be re-established with a longer period of rest. We tested the hypothesis that contractile activity and rest could enhance boost-related metrics.
View Article and Find Full Text PDFThe majority of motor unit studies were performed predominantly on calf muscles, where three types of units: S, FR and FF were found. These muscles are involved in postural activity, walking, running and jumping. The properties of foot muscles that perform other functions, e.
View Article and Find Full Text PDFEffects of a sudden decrease in the stimulation frequency for motor unit force were studied in rat medial gastrocnemius. For 161 functionally isolated single motor units of three types (S, FR, FF), unfused tetanic contractions were evoked by three-phase trains of stimuli (low-high-low frequency). The course of the tetanus at the onset of the third phase of the force recording was analyzed in tetani with variable fusion degree.
View Article and Find Full Text PDFThe sag phenomenon can be observed in fast motor units (MUs) as a transitional decline in force during unfused tetanic contractions; however, its mechanisms are poorly understood. The study aimed to identify in the rat muscle factors that contribute to sag in two types of fast MUs: fast fatigable (FF) and fast resistant to fatigue (FR). First, we performed mathematical decomposition of sagging tetanic contractions of FF and FR MUs into twitch-like responses to consecutive stimuli.
View Article and Find Full Text PDFThere are many reports describing sexual dissimilarities in the CNS, particularly in the brain and cortical regions. However, knowledge regarding sexual dissimilarities in the spinal cord and in particular in the hindlimb muscle-motoneuron connectivity controlling locomotion is limited. In order to recognise sex differences in the architecture of the medial gastrocnemius (MG) motor nucleus in rats of the same age, retrograde-labelled motoneurons were identified following a bath of the proximal stump of the transected MG nerve in horseradish peroxidase.
View Article and Find Full Text PDFThe muscle force is the sum of forces of multiple motor units (MUs), which have different contractile properties. During movements, MUs develop unfused tetani, which result from summation of twitch-shape responses to individual stimuli, which are variable in amplitude and duration. The aim of the study was to develop a realistic muscle model that would integrate previously developed models of MU contractions and an algorithm for the prediction of tetanic forces.
View Article and Find Full Text PDFThis study aimed at investigating the effects of 2, 4 and 8 weeks of endurance training on the contractile properties of slow (S), fast fatigue resistant (FR) and fast fatigable (FF) motor units (MUs) in rat medial gastrocnemius (MG) in relation to the changes in muscle mitochondrial biogenesis. The properties of functionally isolated MUs were examined in vivo. Mitochondrial biogenesis was judged based on the changes in mitochondrial DNA copy number (mtDNA), the content of the electron transport chain (ETC) proteins and PGC-1α in the MG.
View Article and Find Full Text PDF