The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics.
View Article and Find Full Text PDFFitness in micro-organisms can be proxied by growth parameters on different media and/or temperatures. This is achieved by measuring optical density at 600 nm using a spectrophotometer, which measures the effect of absorbance and side scattering due to turbidity of cells suspensions. However, when growth kinetics must be monitored in many 96-well plates at the same time, buying several 96-channel spectrophotometers is often beyond budgets.
View Article and Find Full Text PDFIn asexual animals, female meiosis is modified to produce diploid oocytes. If meiosis still involves recombination, this is expected to lead to a rapid loss of heterozygosity, with adverse effects on fitness. Many asexuals, however, have a heterozygous genome, the underlying mechanisms being most often unknown.
View Article and Find Full Text PDF