Bilateral symmetry defines much of the animal kingdom and is crucial for numerous functions of bilaterian organisms. Genetic approaches have discovered highly conserved patterning networks that establish bilateral symmetry in early embryos, but how this symmetry is maintained throughout subsequent morphogenetic events remains largely unknown. Here we show that the terminal patterning system-which relies on Ras/ERK signaling through activation of the Torso receptor by its ligand Trunk-is critical for preserving bilateral symmetry during Drosophila body axis elongation, a process driven by cell rearrangements in the two identical lateral regions of the embryo and specified by the dorsal-ventral and anterior-posterior patterning systems.
View Article and Find Full Text PDFIn the early embryo, the elongation of the anterior-posterior (AP) body axis is driven by cell intercalation in the germband epithelium. Neighboring cells intercalate through the contraction of AP interfaces (between AP neighbors) into higher-order vertices, which then resolve through the extension of new dorsal-ventral (DV) interfaces (between DV neighbors). Although interface contraction has been extensively studied, less is known about how new interfaces are established.
View Article and Find Full Text PDFDuring the first 2 hours of Drosophila development, precisely orchestrated nuclear cleavages, cytoskeletal rearrangements, and directed membrane growth lead to the formation of an epithelial sheet around the yolk. The newly formed epithelium remains relatively quiescent during the next hour as it is patterned by maternal inductive signals and zygotic gene products. We discovered that this mechanically quiet period is disrupted in embryos with high levels of dNTPs, which have been recently shown to cause abnormally fast nuclear cleavages and interfere with zygotic transcription.
View Article and Find Full Text PDFTerminal regions of the early Drosophila embryo are patterned by the highly conserved ERK cascade, giving rise to the nonsegmented terminal structures of the future larva. In less than an hour, this signaling event establishes several gene expression boundaries and sets in motion a sequence of elaborate morphogenetic events. Genetic studies of terminal patterning discovered signaling components and transcription factors that are involved in numerous developmental contexts and deregulated in human diseases.
View Article and Find Full Text PDFThe thirteen nuclear cleavages that give rise to the Drosophila blastoderm are some of the fastest known cell cycles [1]. Surprisingly, the fertilized egg is provided with at most one-third of the dNTPs needed to complete the thirteen rounds of DNA replication [2]. The rest must be synthesized by the embryo, concurrent with cleavage divisions.
View Article and Find Full Text PDFOriented cell intercalation is an essential developmental process that shapes tissue morphologies through the directional insertion of cells between their neighbors. Previous research has focused on properties of cellcell , while the function of tricellular has remained unaddressed. Here, we identify a highly novel mechanism in which vertices demonstrate independent sliding behaviors along cell peripheries to produce the topological deformations responsible for intercalation.
View Article and Find Full Text PDF