Publications by authors named "Celia Rosilio"

Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71.

View Article and Find Full Text PDF

There is a global and urgent need for expanding our current therapeutical arsenal against leukemia in order to improve their actual cure rates and fight relapse. Targeting the reprogrammed, altered cancer metabolism is an emerging strategy which should profoundly affect cancer cells in their intimate and irrepressible needs and addictions for nutrients uptake and incorporation into the biomass during malignant proliferation. We present here how metformin, an anti-diabetic drug that has attracted a strong interest for its recently discovered anti-cancer properties, can be envisioned as a new adjuvant approach to treat leukemia.

View Article and Find Full Text PDF

We show here that the antidiabetic agents metformin and phenformin and the AMPK activator AICAR exert strong anti-tumoural effects on tPTEN-/- lymphoma cells and on human T-ALL cell lines and primary samples. The compounds act by inhibiting tumour metabolism and proliferation and by inducing apoptosis in parallel with an activation of AMPK and an inhibition of constitutive mTOR. In tPTEN-/- cells, the drugs potentiated the anti-leukaemic effects of dexamethasone, and metformin and phenformin synergised with 2-deoxyglucose (2DG) to impair tumour cell survival.

View Article and Find Full Text PDF

The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis.

View Article and Find Full Text PDF