Publications by authors named "Celia Pombo"

Background: Cavernous cerebral malformations can arise because of mutations in the , , or genes, and lack of has also been reported to induce these malformations in mice. However, the role of the CCM3 (cerebral cavernous malformation 3)-associated kinases in cavernoma development is not known, and we, therefore, have investigated their role in the process.

Methods: We used a combination of an in vivo approach, using mice genetically modified to be deficient in the CCM3-associated kinases STK24 and STK25 (serine/threonine kinases 24 and 25), and the in vitro model of human endothelial cells in which expression of and was inhibited by RNA interference.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CCM genes, CCM3, in endothelial and non-endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • CCM3/PDCD10 is a gene associated with cerebral cavernous malformations (CCM) that interacts with GCKIII protein kinases (MST3, SOK1, MST4).
  • GCKIII proteins have similar effects as CCM3 in endothelial cells and in animal models like zebrafish, indicating their likely role in CCM development.
  • The study introduces an in vitro kinase assay for GCKIII proteins to explore their regulation in endothelial and other cell types under various conditions.
View Article and Find Full Text PDF

Since the discovery of the mammalian sterile twenty (MST) kinase family of proteins (MST1/STK4, MST2/STK3, MST3/STK24, and SOK1/STK25), much has been done that adds to our knowledge of their structure, regulation, and function. In the last few years, a series of articles has unveiled a previous unknown relation of these kinases with metabolic regulation and the homeostasis of metabolic tissues. The aim of this review is to bring together this body of data to provide a detailed picture of the current knowledge about these proteins, metabolism, and some of the associated diseases.

View Article and Find Full Text PDF

Aims/hypothesis: The identification of mediators in the pathogenesis of type 2 diabetes mellitus is essential for the full understanding of this disease. Protein kinases are especially important because of their potential as pharmacological targets. The goal of this study was to investigate whether mammalian sterile-20 3 (MST3/STK24), a stress-regulated kinase, is involved in metabolic alterations in obesity.

View Article and Find Full Text PDF

p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism.

View Article and Find Full Text PDF

Mutations in cerebral cavernous malformation 3 gene are known to result in development of vascular malformations and have recently been proposed to also give rise to meningiomas. We report in this study that lack of CCM3 unexpectedly impairs the senescence response of cells, and this is related to the inability of CCM3-deficient cells to induce the C/EBPβ transcription factor and implement the senescence-associated secretory phenotype. Induction of C/EBPβ and cytokines is also impaired in the absence of CCM3 in response to cytokines in nonsenescent cells, pointing to it being a primary defect and not secondary to impaired senescence.

View Article and Find Full Text PDF

Specific mutations in the CCM3 gene predispose to the development of cerebral cavernous malformations, a special type of vascular lesions. This calls for an elucidation of the precise nature of the CCM3 protein and a deep understanding of its molecular regulation. In this review, we outline our current knowledge of the different CCM3 protein complexes.

View Article and Find Full Text PDF

While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress.

View Article and Find Full Text PDF

Despite intensive study, the mechanisms regulating activation of mTOR and the consequences of that activation in the ischemic heart remain unclear. This is particularly true for the setting of ischemia/reperfusion (I/R) injury. In a mouse model of I/R injury, we observed robust mTOR activation, and its inhibition by rapamycin increased injury.

View Article and Find Full Text PDF

Mutations in CCM3/PDCD10 result in cerebral cavernous malformations (CCMs), a major cause of cerebral hemorrhage. Despite intense interest in CCMs, very little is known about the function of CCM3. Here, we report that CCM3 is located on the Golgi apparatus, forming a complex with proteins of the germinal center kinase III (GCKIII) family and GM130, a Golgi-resident protein.

View Article and Find Full Text PDF

Oxidant stress is a ubiquitous stressor with negative impacts on multiple cell types. ASK1 is a central mediator of oxidant injury, but while mechanisms of its inhibition, such as sequestration by 14-3-3 proteins and thioredoxin, have been identified, mechanisms of activation have remained obscure and the signaling pathways regulating this are not clear. Here, we report that phosphorylation of 14-3-3zeta at serine 58 (S58) is dynamically regulated in the cell and that the phosphorylation status of S58 is a critical factor regulating oxidant stress-induced cell death.

View Article and Find Full Text PDF

SOK1 is a Ste20 protein kinase of the germinal center kinase (GCK) family that has been shown to be activated by oxidant stress and chemical anoxia, a cell culture model of ischemia. More recently, it has been shown to be localized to the Golgi apparatus, where it functions in a signaling pathway required for cell migration and polarization. Herein, we demonstrate that SOK1 regulates cell death after chemical anoxia, as its down-regulation by RNA interference enhances cell survival.

View Article and Find Full Text PDF

The Ste20 (sterile 20) proteins are a large family of serine/threonine kinases. Since their discovery a growing body of evidence has implicated them in the regulation of signaling pathways governing cell growth, cell differentiation cell death and cell volume. Approximately 30 human members have been identified based on the high degree of homology of their catalytic domain to that of the Ste20p from Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Undifferentiated (anaplastic) thyroid carcinoma is a highly aggressive human cancer with very poor prognosis. Although there have been a few studies of candidate treatments, the fact that it is an infrequent tumor makes it very difficult to design clinical trials. A strong association has been observed between undifferentiated thyroid carcinoma and TP53 mutations in numerous molecular genetic and expression studies.

View Article and Find Full Text PDF