Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy.
View Article and Find Full Text PDFPurpose Of Review: Although multiple sclerosis is considered the prototype of a primary autoimmune disease in the central nervous system, there is emerging evidence that primary oligodendrocyte dysfunctions can suffice to trigger a secondary immune response in the nervous system. This short review focuses on the possible primary role of oligodendrocytes in axon loss and inflammatory demyelination.
Recent Findings: The analysis of natural and engineered mouse mutants has provided unexpected insight into oligodendrocyte function beyond that of axonal myelination for rapid impulse propagation.