Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested.
View Article and Find Full Text PDFBackground: Metribuzin is a widely used herbicide that has been identified as a groundwater contaminant. In this study, slow-release formulations of metribuzin were designed by encapsulating the active ingredient in phosphatidylcholine (PC) vesicles and adsorbing the vesicles onto montmorillonite.
Results: The maximum active ingredient content in the slow-release formulations was 246 g kg(-1) .
Metribuzin (MTB) is a herbicide widely used for weed control in growing soybeans and other crops and has been identified in many parts of the world as a groundwater contaminant. To prepare controlled-release formulations (CRFs) of MTB, it was entrapped within a sepiolite-gel-based matrix with one of two proportions of clay/herbicide and used as either a gel or powder after freeze-drying. To determine how its persistence in soil is affected by formulation and soil type, MTB was applied as a CRF or commercial formulation (CM) to soils with different properties.
View Article and Find Full Text PDFBackground: The development of controlled-release formulations of alachlor to extend the period of weed control was studied. This extended duration reduces the need for high herbicide application rates that could lead to environmental contamination. For this purpose, the influence of formulation, as well as the influence of soil characteristics, on alachlor efficacy and persistence in soil of a commercial formulation (CF) and different ethylcellulose microencapsulated formulations (MEFs) was evaluated.
View Article and Find Full Text PDFMetribuzin is an herbicide widely used for weed control that has been identified as a groundwater pollutant. It contaminates the environment even when it is used according to the manufacturer's instructions. To reduce herbicide leaching and increase weed control, new controlled release formulations were developed by entrapping metribuzin within a sepiolite-gel-based matrix using two clay/herbicide proportions (0.
View Article and Find Full Text PDFAtrazine and alachlor formulations were designed by encapsulating the herbicide molecules into phosphatidylcholine (PC) vesicles, which subsequently were adsorbed on montmorillonite. PC and montmorillonite are classified as substances of minimal toxicological risk by the U.S.
View Article and Find Full Text PDFA new clay-liposome complex was developed for reducing leaching of herbicides and contamination of groundwater. The liposomes were composed of the neutral and Environmental Protection Agency approved phospholipid phosphatidylcholine (PC). Adsorption of PC liposomes on the clay mineral montmorillonite could exceed the cation exchange capacity of the clay, and was well simulated by the Langmuir equation.
View Article and Find Full Text PDFA multiresidue gas chromatography-mass spectrometry method was developed to determine 28 priority pesticides of different chemical families (organochlorine, organophosphorus, triazines, anilides) together with some of their transformation products in river sediment. Ultrasonic, Soxhlet and pressurized liquid extraction (PLE) methods were compared in spiking experiments using acetone:hexane (1:1) followed by alumina solid phase extraction cartridges or in-cell alumina clean-up for PLE. All extraction techniques produced acceptable recoveries for the pesticides under study, although Soxhlet extraction produced the lowest recoveries for 2,4-DDE, trifluralin, lindane, and hexachlorobenzene (<50%) whereas ultrasonic extraction resulted in low recoveries for hexachlorobenzene and lindane (<50%).
View Article and Find Full Text PDFVesicle-clay complexes in which positively charged vesicles composed of didodecyldimethylammonium bromide (DDAB) were adsorbed on montmorillonite removed efficiently anionic (sulfentrazone, imazaquin) and neutral (alachlor, atrazine) pollutants from water. These complexes (0.5% w:w) removed 92-100% of sulfentrazone, imazaquin and alachlor and 60% of atrazine from a solution containing 10mg/L of it.
View Article and Find Full Text PDFThe development of controlled-release formulations of alachlor to diminish its leaching in sandy soils, avoiding groundwater contamination and maintaining its efficacy, was studied. For this purpose, ethylcellulose (EC) microencapsulated formulations (MEFs) of alachlor were prepared under different conditions and applied to soil columns to study their mobility. The results show that in all cases the release into water of alachlor from MEFs was retarded when compared with commercial formulation.
View Article and Find Full Text PDFThis paper investigated the photochemical behaviour of the herbicide norflurazon (NFL) in the presence of different soil colloidal components and several cyclodextrins (CDs). The interaction of NFL with CDs yielded the formation of inclusion complexes at 1:1 stoichiometric ratio in solution, with an increase of the herbicide solubility. The irradiation of NFL aqueous solutions in the presence of CDs showed that the higher the formation constant of NFL-CD complexes (Kc) and their solubility, the higher their photocatalytic effects, following the CDs in the order: RAMEB>HPBCD>beta-CD>alpha-CD>gamma-CD.
View Article and Find Full Text PDFFive ethylcellulose (EC) microencapsulated formulations (MEFs) of norflurazon were prepared and applied in soil to study their mobility, dissipation, activity, and persistence. The results show that the release into water of norflurazon from EC microspheres was retarded when compared with that of commercial herbicide. The mobility of norflurazon from MEFs into soil columns has been greatly diminished in comparison with that of its current commercial formulation (CF).
View Article and Find Full Text PDFThe effects of beta-cyclodextrin (BCD) on the sorption-desorption and transport processes of the herbicide norflurazon (NFL) in soils of different characteristics when both are applied simultaneously have been investigated. Adsorption-desorption studies of NFL on six soils of very different characteristics in the presence of BCD have been performed using a batch equilibration method and correlated to its mobility in homogeneous hand-packed soil columns. NFL determinations were undertaken by HPLC equipped with a diode array detector at a wavelength of 220 nm.
View Article and Find Full Text PDFJ Environ Sci Health B
June 2006
The effect of one organic amendment consisting of an urban waste compost (UWC) was assessed on the sorption properties of the herbicide 2,4-D on four soils of different physicochemical characteristics. The soils chosen were a Typic Haphorthod (ST), a Typic Endoaquept (SR), an Entic Pelloxerert (TO), and a Typic Eutrochrept (AL). Adsorption experiments were performed on the original soils, and on mixtures of these soils with UWC at a rate of 6.
View Article and Find Full Text PDFThe effect of beta-cyclodextrin (beta-CD) on the removal of the herbicide norflurazon (NFL) from soils has been investigated. The interaction of NFL with beta-CD in solution yielded the formation of a water-soluble inclusion complex at 1:1 stoichiometric ratio, which gave an increase in NFL solubility. Desorption studies of NFL previously adsorbed on six soils of different characteristics have been performed in the presence of 0.
View Article and Find Full Text PDFThe interaction of norflurazon with alpha- and gamma-cyclodextrins (CDs) yielded the formation of inclusion complexes at a 1:1 stoichiometric ratio in solution and in the solid state. Apparent stability constants of 50.7+/-1.
View Article and Find Full Text PDFThe herbicide norflurazon was encapsulated in ethylcellulose (EC(40)) microspheres by the solvent evaporation technique to obtain controlled release formulations. The kinetics of release of the active ingredient into the aqueous solution from different preparations was determined. It was found that the percentage release of the incorporated herbicide was a function of the composition and formation conditions of the formulations (amount of emulsifying agent, EC(40)/herbicide ratio, stirring speed, and percentage of pore-forming agent).
View Article and Find Full Text PDFThe influence of two organic amendments consisting of an urban waste compost (SUW) and a commercial amendment from olive mill wastes (OW) was assessed on the sorption properties and leaching of the ionizable herbicide imazaquin on four soils with different physicochemical characteristics. A loamy sand soil (CR), a loam soil (P44), a silt loam soil (AL), and a clay soil (TM), with low-medium organic matter contents, were chosen. Sorption-desorption experiments were performed on the original soils and on a mixture of these soils with the organic amendments at a rate of 6.
View Article and Find Full Text PDFAdsorption-desorption studies of norflurazon on 17 soils of very different characteristics have been performed using a batch equilibration method and correlated to its mobility, activity, and persistence in soils. The influence of different soil properties and components on norflurazon adsorption was determined. The significant variables were organic matter (OM) content and iron and aluminum oxides, which accounted for 85 and 11% of the variability, respectively.
View Article and Find Full Text PDFThe formulation of inclusion complexes of the herbicide norflurazon as guest and beta-cyclodextrin (beta-CD) as host has been studied as a first step in the use of cyclodextrins to obtain improved formulations of this herbicide. The interaction of norflurazon with beta-CD produced the formation of an inclusion complex in solution and in solid state. The inclusion of norflurazon in beta-CD in solution was studied by phase solubility, and an apparent stability constant of 360 M(-)(1), a 1:1 stoichiometric ratio for the complex, and up to 5-fold increase in norflurazon solubility were determined.
View Article and Find Full Text PDFA new approach was developed for reducing leaching of herbicides and contamination of groundwater. Liposome-clay formulations of the anionic herbicides sulfometuron and sulfosulfuron were designed for slow release by incorporating the herbicide in positively charged vesicles of didodecyldimethylammonium (DDAB), which were adsorbed on the negatively charged clay, montmorillonite. Freeze fracture electron microscopy demonstrated the existence of DDAB vesicles and aggregated structures on external clay surfaces.
View Article and Find Full Text PDFThe influence of two organic amendments on norflurazon sorption-desorption processes in four soils with very different physicochemical characteristics was studied in laboratory experiments to evaluate the potential leaching of this pesticide through organic fertilized soils. Sorption-desorption experiments were performed on original soils and on a mixture of these soils with urban waste compost (SUW) and a commercial amendment from olive-mill wastes (OW), at a rate of 6.25% (w/w).
View Article and Find Full Text PDFThe effect of the ionic strength on adsorption of Cu on calcium montmorillonite was studied at concentrations ranging from 31 to 516 microM. An adsorption model was employed in the analysis of the data. When the background electrolyte was NaClO4, the ionic exchange was suppressed at 0.
View Article and Find Full Text PDFComplexes of the herbicide glyphosate (GPS) and the heavy metal Cu were studied by infrared spectroscopy under controlled pH, in order to know the mechanisms involved in the formation of these complexes. In CuGPS(-), the IR spectrum shows participation of the carboxylate and phosphonic moieties of the GPS molecule. The formation of the complex produces a lower symmetry in the phosphonate group because of loss of the resonance situation of PO(3)(2)(-) groups, with a subsequent split of their absorption bands.
View Article and Find Full Text PDF