Publications by authors named "Celia G Fernandez"

Pervasive neuroinflammation occurs in many neurodegenerative diseases, including Alzheimer's disease (AD). SPI1/PU.1 is a transcription factor located at a genome-wide significant AD-risk locus and its reduced expression is associated with delayed onset of AD.

View Article and Find Full Text PDF

Blocking the interaction between cell-surface receptors and their ligands is a proven therapeutic strategy. Adhesion G protein-coupled receptors (aGPCRs) are key cell-surface receptors that regulate numerous pathophysiological processes, and their large extracellular regions (ECRs) mediate ligand binding and function. The aGPCR GPR56/ADGRG1 regulates central nervous system myelination and melanoma progression by interacting with its ligand, tissue transglutaminase 2 (TG2), but the molecular basis for this interaction is largely undefined.

View Article and Find Full Text PDF

APOE4 is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), increasing the risk of developing the disease by 3-fold in the 14% of the population that are carriers. Despite 25 years of research, the exact mechanisms underlying how APOE4 contributes to AD pathogenesis remain incompletely defined. APOE in the brain is primarily expressed by astrocytes and microglia, cell types that are now widely appreciated to play key roles in the pathogenesis of AD; thus, a picture is emerging wherein APOE4 disrupts normal glial cell biology, intersecting with changes that occur during normal aging to ultimately cause neurodegeneration and cognitive dysfunction.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by pathological brain lesions and a decline in cognitive function. β-Amyloid peptides (Aβ), derived from proteolytic processing of amyloid precursor protein (APP), play a central role in AD pathogenesis. β-Site APP cleaving enzyme 1 (BACE1), the transmembrane aspartyl protease which initiates Aβ production, is axonally transported in neurons and accumulates in dystrophic neurites near cerebral amyloid deposits in AD.

View Article and Find Full Text PDF

Adhesion G protein-coupled receptors (aGPCRs) play critical roles in diverse neurobiological processes including brain development, synaptogenesis, and myelination. aGPCRs have large alternatively spliced extracellular regions (ECRs) that likely mediate intercellular signaling; however, the precise roles of ECRs remain unclear. The aGPCR GPR56/ADGRG1 regulates both oligodendrocyte and cortical development.

View Article and Find Full Text PDF

Background: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD.

View Article and Find Full Text PDF

Abnormal accumulation of β-secretase (BACE1) in dystrophic neurites and presynaptic β-amyloid (Aβ) production contribute to Alzheimer's disease pathogenesis. Little, however, is known about BACE1 sorting and dynamic transport in neurons. We investigated BACE1 trafficking in hippocampal neurons using live-cell imaging and selective labeling.

View Article and Find Full Text PDF

Background: p23 belongs to the highly conserved p24 family of type I transmembrane proteins, which participate in the bidirectional protein transport between the endoplasmic reticulum and Golgi apparatus. Mammalian p23 has been shown to interact with γ-secretase complex, and modulate secretory trafficking as well as intramembranous processing of amyloid precursor protein in cultured cells. Negative modulation of β-amyloid production by p23 in cultured cell lines suggested that elevation of p23 expression in neurons might mitigate cerebral amyloid burden.

View Article and Find Full Text PDF