Publications by authors named "Celia Chaiban"

Vector-borne diseases, such as malaria, are affected by the rapid urban growth and climate change in sub-Saharan Africa (SSA). In this context, intra-urban malaria risk maps act as a key decision-making tool for targeting malaria control interventions, especially in resource-limited settings. The Demographic and Health Surveys (DHS) provide a consistent malaria data source for mapping malaria risk at the national scale, but their use is limited at the intra-urban scale because survey cluster coordinates are randomly displaced for ethical reasons.

View Article and Find Full Text PDF

Efficient planning of measures limiting epidemic spread requires information on farm locations and sizes (number of animals per farm). However, such data are rarely available. The intensification process which is operating in most low- and middle-income countries (LMICs), comes together with a spatial clustering of farms, a characteristic epidemiological models are sensitive to.

View Article and Find Full Text PDF

The analysis of census data aggregated by administrative units introduces a statistical bias known as the modifiable areal unit problem (MAUP). Previous researches have mostly assessed the effect of MAUP on upscaling models. The present study contributes to clarify the effects of MAUP on the downscaling methodologies, highlighting how a priori choices of scales and shapes could influence the results.

View Article and Find Full Text PDF

Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities.

View Article and Find Full Text PDF

The highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Asia since 2003 and diversified into several genetic lineages, or clades. Although the spatial distribution of its outbreaks was extensively studied, differences in clades were never previously taken into account. We developed models to quantify associations over time and space between different HPAI H5N1 viruses from clade 1, 2.

View Article and Find Full Text PDF