An is a subset of arcs in matchings, such that the corresponding starting points are consecutive, and the same holds for the ending points. Such patterns are in one-to-one correspondence with the permutations. We focus on the occurrence frequency of such patterns in matchings and native (real-world) RNA structures with pseudoknots.
View Article and Find Full Text PDFSynaptic transmission, connectivity, and dendritic morphology mature in parallel during brain development and are often disrupted in neurodevelopmental disorders. Yet how these changes influence the neuronal computations necessary for normal brain function are not well understood. To identify cellular mechanisms underlying the maturation of synaptic integration in interneurons, we combined patch-clamp recordings of excitatory inputs in mouse cerebellar stellate cells (SCs), three-dimensional reconstruction of SC morphology with excitatory synapse location, and biophysical modeling.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2020
Complex diseases such as Cancer or Alzheimer's are caused by multiple molecular perturbations leading to pathological cellular behavior. However, the identification of disease-induced molecular perturbations and subsequent development of efficient therapies are challenged by the complexity of the genotype-phenotype relationship. Accordingly, a key issue is to develop frameworks relating molecular perturbations and drug effects to their consequences on cellular phenotypes.
View Article and Find Full Text PDFRecent advances in omics technologies provide the leverage for the emergence of precision medicine that aims at personalizing therapy to patient. In this undertaking, computational methods play a central role for assisting physicians in their clinical decision-making by combining data analysis and systems biology modelling. Complex diseases such as cancer or diabetes arise from the intricate interplay of various biological molecules.
View Article and Find Full Text PDF