Histone lysine methylation is a major epigenetic modification that participates in several cellular processes including gene regulation and chromatin structure. This mark can go awry in disease contexts such as cancer. Two decades ago, the discovery of histone demethylase enzymes thirteen years ago sheds light on the complexity of the regulation of this mark.
View Article and Find Full Text PDFBackground: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease.
View Article and Find Full Text PDFDNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias.
View Article and Find Full Text PDFSplicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery.
View Article and Find Full Text PDFDermatologic care plays an important role in the transitioning process for transgender women, with changes occurring to the skin from hormone therapy (HT) and gender affirming procedures. We sought to identify knowledge gaps in a group of transgender women pertaining to both skin and hair changes during the transitioning process. The study was conducted as a cross-sectional survey.
View Article and Find Full Text PDFHypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL.
View Article and Find Full Text PDFOsteoclasts are resorptive cells that are important for homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role for epigenetic mechanisms in osteoclastogenesis. A recent study showed that epigenetic silencing of the negative regulator of osteoclastogenesis Irf8 by DNA methylation is required for osteoclast differentiation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
During meiotic recombination, double-strand breaks (DSBs) are formed in chromosomal DNA and then repaired as either crossovers (COs) or non-crossovers (NCOs). In most taxa, the number of DSBs vastly exceeds the number of COs. COs are required for generating genetic diversity in the progeny, as well as proper chromosome segregation.
View Article and Find Full Text PDFDisruption of the interaction of bromo and extraterminal (BET) proteins with acetylated histones using small molecule inhibitors suppresses Myc-driven cancers and TLR-induced inflammation in mouse models. The predominant mechanism of BET inhibitor action is to suppress BET-mediated recruitment of positive transcription elongation factor b and, thus, transcription elongation. We investigated the effects of BET inhibitor I-BET151 on transcriptional responses to TLR4 and TNF in primary human monocytes and also on responses to cytokines IFN-β, IFN-γ, IL-4, and IL-10, which activate the JAK-STAT signaling pathway and are important for monocyte polarization and inflammatory diseases.
View Article and Find Full Text PDF