Background: There is increasing evidence that artificial intelligence (AI) breast cancer risk evaluation tools using digital mammograms are highly informative for 1-6 years following a negative screening examination. We hypothesized that algorithms that have previously been shown to work well for cancer detection will also work well for risk assessment and that performance of algorithms for detection and risk assessment is correlated.
Methods: To evaluate our hypothesis, we designed a case-control study using paired mammograms at diagnosis and at the previous screening visit.
It is uncommon for risk groups defined by statistical or artificial intelligence (AI) models to be chosen by jointly considering model performance and potential interventions available. We develop a framework to rapidly guide choice of risk groups in this manner, and apply it to guide breast cancer screening intervals using an AI model. Linear programming is used to define risk groups that minimize expected advanced cancer incidence subject to resource constraints.
View Article and Find Full Text PDFBackground Accurate breast cancer risk assessment after a negative screening result could enable better strategies for early detection. Purpose To evaluate a deep learning algorithm for risk assessment based on digital mammograms. Materials and Methods A retrospective observational matched case-control study was designed using the OPTIMAM Mammography Image Database from the National Health Service Breast Screening Programme in the United Kingdom from February 2010 to September 2019.
View Article and Find Full Text PDF