Based on the hypothesis that the variation of the metabolomes of latex is a response to selective pressure and should thus be affected differently from other organs, their variation could provide an insight into the defensive chemical selection of plants. Metabolic profiling was used to compare tissues of three Euphorbia species collected in diverse regions. The metabolic variation of latexes was much more limited than that of other organs.
View Article and Find Full Text PDFFungal endophytes isolated from two latex bearing species were chosen as models to show their potential to expand their host plant chemical diversity. Thirty-three strains were isolated from (Apocynaceae) and (Euphorbiaceae). High performance thin layer chromatography (HPTLC) was used to metabolically profile samples.
View Article and Find Full Text PDFCertain Aspergillus species such as Aspergillus flavus and A. parasiticus are well known for the formation of sclerotia. These developmental structures are thought to act as survival structures during adverse environmental conditions but are also a prerequisite for sexual reproduction.
View Article and Find Full Text PDFGalactofuranose (Galf)-containing glycostructures are important to secure the integrity of the fungal cell wall. Golgi-localized Galf-transferases (Gfs) have been identified in Aspergillus nidulans and Aspergillus fumigatus. BLASTp searches identified three putative Galf-transferases in Aspergillus niger.
View Article and Find Full Text PDFAzole antifungals inhibit the fungal ergosterol biosynthesis pathway, resulting in either growth inhibition or killing of the pathogen, depending on the species. Here we report that azoles have an initial growth-inhibitory (fungistatic) activity against the pathogen Aspergillus fumigatus that can be separated from the succeeding fungicidal effects. At a later stage, the cell wall salvage system is induced.
View Article and Find Full Text PDFG3 (Bethesda)
September 2016
The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway.
View Article and Find Full Text PDFThe biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules.
View Article and Find Full Text PDFBackground: Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter.
View Article and Find Full Text PDFBackground: Biodiesel production using cyanobacteria is a promising alternative to fossil fuels. In this study we created a transposon library of Synechococcus elongatus PCC 7942 in order to identify novel gene targets for enhanced fatty acid and hydrocarbon production. The transposon library was subsequently screened for desirable traits using macro- and microscopic observations as well as staining with the lipophilic dye Nile Red.
View Article and Find Full Text PDFIron is an essential metal for many organisms, but the biologically relevant form of iron is scarce because of rapid oxidation resulting in low solubility. Simultaneously, excessive accumulation of iron is toxic. Consequently, iron uptake is a highly controlled process.
View Article and Find Full Text PDFPLoS One
September 2014
The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A.
View Article and Find Full Text PDFHeme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation.
View Article and Find Full Text PDFTo increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5'-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modulating expression of hemA [coding for 5'-aminolevulinic acid synthase (ALAS)]. A hemA deletion mutant (ΔhemA) was constructed, which showed conditional lethality.
View Article and Find Full Text PDFHeme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes.
View Article and Find Full Text PDFFilamentous fungi are the cause of serious human and plant diseases but are also exploited in biotechnology as production platforms. Comparative genomics has documented their genetic diversity, and functional genomics and systems biology approaches are under way to understand the functions and interaction of fungal genes and proteins. In these approaches, gene functions are usually inferred from deletion or overexpression mutants.
View Article and Find Full Text PDFThe addition of mannose residues to glycoproteins and glycolipids in the Golgi is carried out by mannosyltransferases. Their activity depends on the presence of GDP-mannose in the lumen of the Golgi. The transport of GDP-mannose (mannosyl donor) into the Golgi requires a specific nucleotide sugar transport present in the Golgi membrane.
View Article and Find Full Text PDFRho GTPases are signalling molecules regulating morphology and multiple cellular functions including metabolism and vesicular trafficking. To understand the connection between polarized growth and secretion in the industrial model organism Aspergillus niger, we investigated the function of all Rho family members in this organism. We identified six Rho GTPases in its genome and used loss-of-function studies to dissect their functions.
View Article and Find Full Text PDFThe fhbA genes encoding putative flavohemoglobins (FHb) from Aspergillus niger and Aspergillus oryzae were isolated. Comparison of the deduced amino acid sequence of the A. niger fhbA gene and other putative filamentous fungal FHb-encoding genes to that of Ralstonia eutropha shows an overall conserved gene structure and completely conserved catalytic amino acids.
View Article and Find Full Text PDFEndoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A.
View Article and Find Full Text PDFMany cells and organisms go through polarized growth phases during their life. Cell polarization is achieved by local accumulation of signaling molecules which guide the cytoskeleton and vesicular trafficking to specific parts of the cell and thus ensure polarity establishment and maintenance. Polarization of signaling molecules is also fundamental for the lifestyle of filamentous fungi such as Aspergillus niger and essential for their morphogenesis, development and survival under environmental stress conditions.
View Article and Find Full Text PDFCoordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus.
View Article and Find Full Text PDFPycnoporus cinnabarinus laccase was fused to the C-terminal linker and carbohydrate binding module (CBM) of Aspergillus niger cellobiohydrolase B (CBHB). The chimeric enzyme of molecular mass 100 kDa was successfully produced in A. niger.
View Article and Find Full Text PDFBackground: The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A.
View Article and Find Full Text PDFThe identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions.
View Article and Find Full Text PDFExpression of several Aspergillus niger genes encoding major secreted, but not vacuolar, protease genes including the major acid protease gene pepA, was shown to be affected in the previously isolated A. niger protease mutant, AB1.13 [Mattern, I.
View Article and Find Full Text PDF