Publications by authors named "Cedryck Vaquette"

Background: This case report demonstrates the effective clinical application of a 3D-printed, patient-specific polycaprolactone (PCL) resorbable scaffold for staged alveolar bone augmentation.

Objective: To evaluate the effectiveness of a 3D-printed PCL scaffold in facilitating alveolar bone regeneration and subsequent dental implant placement.

Materials And Methods: A 46-year-old man with a missing tooth (11) underwent staged alveolar bone augmentation using a patient-specific PCL scaffold.

View Article and Find Full Text PDF

Periodontal regeneration requires the re-attachment of oblique and perpendicular periodontal ligament (PDL) fibres to newly formed cementum and alveolar bone, which has proven elusive with existing approaches. In this study, multiple fibre-guiding biphasic tissue engineered constructs were fabricated by melt electrowriting. The biphasic scaffolds were 95 % porous and consisted of a pore size gradient bone compartment and periodontal compartment made of fibre-guiding channels with micro-architectural features ranging from 100 to 60 µm aimed to direct PDL fibre alignment and attachment.

View Article and Find Full Text PDF

Tension-free flap closure to prevent soft tissue dehiscence is a prerequisite for successful bone augmentation in orodental reconstructive surgery. Since soft tissue contour follows the underlying jaw bony architecture, resorption of alveolar (jaw) bone limits the availability of soft tissue for wound closure following major bone reconstruction, required to facilitate oral rehabilitation with endosseous dental implants following tooth loss. Although there are several clinical procedures to increase soft tissue volume, these techniques are complicated and technically demanding.

View Article and Find Full Text PDF

 Chronic injuries to the scapholunate ligament (SLIL) alter carpal kinematics and may progress to early degenerative osteoarthritis. To date, there is no consensus for the best method for SLIL reconstruction. This study aims to assess the use of growth factors (bone morphogenetic protein [BMP]2 and growth and differentiation factor 5 [GDF5]) for compartmentalized regeneration of bone and ligament in this multiphasic scaffold in a rabbit knee model.

View Article and Find Full Text PDF

3D printing offers attractive opportunities for large-volume bone regeneration in the oro-dental and craniofacial regions. This is enabled by the development of CAD-CAM technologies that support the design and manufacturing of anatomically accurate meshes and scaffolds. This review describes the main 3D-printing technologies utilized for the fabrication of these patient-matched devices, and reports on their pre-clinical and clinical performance including the occurrence of complications for vertical bone augmentation and craniofacial applications.

View Article and Find Full Text PDF

Scaffolds have been used to promote periodontal regeneration by providing control over the spacio-temporal healing of the periodontium (cementum, periodontal ligament (PDL) and alveolar bone). This study proposes to enhance the biofunctionality of a biphasic scaffold for periodontal regeneration by means of cell-laid extracellular matrix (ECM) decoration. To this end, a melt electrowritten scaffold was cultured with human osteoblasts for the deposition of bone-specific ECM.

View Article and Find Full Text PDF

Recent advancements in decellularization have seen the development of extracellular matrix (ECM)-decorated scaffolds for bone regeneration; however, little is understood of the impact of culture prior to decellularization on the performances of these constructs. Therefore, this study investigated the effect of culture on ECM-decorated melt electrowritten polycaprolactone scaffold bioactivity. The scaffolds were seeded with osteoblasts and cultured for 1, 2, or 4 weeks to facilitate bone-specific ECM deposition and subsequently decellularized to form an acellular ECM-decorated scaffold.

View Article and Find Full Text PDF

The regeneration of the ruptured scapholunate interosseous ligament (SLIL) represents a clinical challenge. Here, we propose the use of a Bone-Ligament-Bone (BLB) 3D-printed polyethylene terephthalate (PET) scaffold for achieving mechanical stabilisation of the scaphoid and lunate following SLIL rupture. The BLB scaffold featured two bone compartments bridged by aligned fibres (ligament compartment) mimicking the architecture of the native tissue.

View Article and Find Full Text PDF

Resorption of alveolar bone following tooth extraction is a physiological process that can often prevent the placement of dental implants due to the limited bone remaining. In severe cases, vertical bone augmentation, which aims to restore bone in an extraskeletal dimension (outside of the skeletal envelope), is required prior to implant placement. While current treatment strategies rely on autologous grafts, or "Guided Bone Regeneration" involving the placement of particulate bone grafting biomaterials under a protective membrane, the field is shifting to patient-matched solutions.

View Article and Find Full Text PDF

Scaffold cell seeding is a crucial step for the standardization and homogeneous maturation of tissue engineered constructs. This is particularly critical in the context of additively manufactured scaffolds whereby large pore size and high porosity usually impedes the retention of the seeding solution resulting in poor seeding efficacy and heterogeneous cell distribution. To circumvent this limitation, a simple yet efficient cell seeding technique is described in this chapter consisting of preincubating the scaffold in 100% serum for 1 h leading to reproducible seeding.

View Article and Find Full Text PDF

Decellularized tissue engineered constructs have the potential to promote regeneration by providing a biomimetic extracellular matrix that directs tissue specific regeneration when implanted in situ. Recently, the use of cell sheets has shown promising results in promoting periodontal regeneration. Here, we describe the fabrication of decellularized periodontal cell sheets with intact extracellular matrix structural and biological properties.

View Article and Find Full Text PDF

Objectives: To analyze the influence of compression on tissue integration and degradation of soft tissue substitutes.

Material And Methods: Six subcutaneous pouches in twenty-eight rats were prepared and boxes made of AlO were implanted and used as carriers for soft tissue substitutes: a collagen matrix (MG), two volume-stable collagen matrices (FG/MGA), and a polycaprolactone scaffold(E). The volume-stable materials (FG/MGA/E) were further implanted with a twofold (2) and a fourfold (4) compression, created by the stacking of additional layers of the substitute materials.

View Article and Find Full Text PDF

Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor.

View Article and Find Full Text PDF

Incorporation of a bioactive mineral filler in a biodegradable polyester scaffold is a promising strategy for scaffold assisted bone tissue engineering (TE). The current study evaluates the in vitro behavior of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/Akermanite (AKM) composite scaffolds manufactured using selective laser sintering (SLS). Exposure of the mineral filler on the surface of the scaffold skeleton was evident from in vitro mineralization in PBS.

View Article and Find Full Text PDF

Periodontal regeneration is characterized by the attachment of oblique periodontal ligament fibres on the tooth root surface. To facilitate periodontal ligament attachment, a fibre-guiding tissue engineered biphasic construct was manufactured by melt electrowriting (MEW) for influencing reproducible cell guidance and tissue orientation. The biphasic scaffold contained fibre-guiding features in the periodontal ligament component comprising of 100 µm spaced channels (100CH), a pore size gradient in the bone component and maintained a highly porous and fully interconnected interface between the compartments.

View Article and Find Full Text PDF

Neurogenic heterotopic ossifications (NHOs) are incapacitating complications of traumatic brain and spinal cord injuries (SCI) that manifest as abnormal bone formation in periarticular muscles. Using a unique model of NHO after SCI in genetically unmodified mice, we have previously established that the innate immune system plays a key driving role in NHO pathogenesis. The role of adaptive immune cells in NHO pathogenesis, however, remains unexplored in this model.

View Article and Find Full Text PDF

Vertical bone augmentation is aimed at regenerating bone extraskeletally (outside the skeletal envelope) in order to increase bone height. It is generally required in the case of moderate to severe atrophy of bone in the oral cavity due to tooth loss, trauma, or surgical resection. Currently utilized surgical techniques, such as autologous bone blocks, distraction osteogenesis, and Guided Bone Regeneration (GBR), have various limitations, including morbidity, compromised dimensional stability due to suboptimal resorption rates, poor structural integrity, challenging handling properties, and/or high failure rates.

View Article and Find Full Text PDF

Recent advances in the field of regenerative medicine and biomaterial science have highlighted the importance of controlling immune cell phenotypes at the biomaterial interface. These studies have clearly indicated that a rapid resolution of the inflammatory process, mediated by a switch in the macrophage population towards a reparative phenotype, is essential for tissue regeneration to occur. While various biomaterial surfaces have been developed in order to impart immunomodulatory properties to the resulting constructs, an alternative strategy involving the use of reparative biological cues, known as resolvins, is emerging in regenerative medicine.

View Article and Find Full Text PDF

The anti-angiogenic effects of bisphosphonates have been hypothesized as one of the major etiologic factors in the development of medication-related osteonecrosis of the jaw (MRONJ), a severe debilitating condition with limited treatment options. This study evaluated the potential of a gelatine-hyaluronic acid hydrogel loaded with the angiogenic growth factor, vascular endothelial growth factor (VEGF), as a local delivery system to aid in maintaining vascularization in a bisphosphonate-treated (Zoledronic Acid) rodent maxillary extraction defect. Healing was assessed four weeks after implantation of the VEGF-hydrogel into extraction sockets.

View Article and Find Full Text PDF

Objective: To investigate the effect of Hfe gene mutation on the distribution of iron and periodontal bone loss in periodontal tissues.

Background Data: It remains unclear how tissue iron loading affects the periodontium architectures in a genetic animal model of hereditary haemochromatosis (HH).

Methods: Male C57BL/6 Hfe (8 weeks old) and wild-type (WT) mice were utilized to examine the iron distribution in periodontal tissues, as well as periodontal tissues changes using micro-computed tomography and histomorphometric analysis.

View Article and Find Full Text PDF

Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs.

View Article and Find Full Text PDF

Cells interact with 3D fibrous platform topography via a nano-scaled focal adhesion complex, and more research is required on how osteoblasts sense and respond to random and aligned fibers through nano-sized focal adhesions and their downstream events. The present study assessed human primary osteoblast cells' sensing and response to random and aligned medical-grade polycaprolactone (PCL) fibrous 3D scaffolds fabricated via the melt electrowriting (MEW) technique. Cells cultured on a tissue culture plate (TCP) were used as 2D controls.

View Article and Find Full Text PDF

Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g.

View Article and Find Full Text PDF

Introduction: Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e.

View Article and Find Full Text PDF

The combination of macro- and microporosity is a potent manner of enhancing osteogenic potential, but the biological events leading to this increase in osteogenesis are not well understood. In this study, we investigated the effect of a dual pore size scaffold on the physical and biological properties, with the hypothesis that cell condensation is the determining factor for enhanced osteogenic differentiation. To this end, a hierarchical scaffold possessing a dual (large and small) pore size was fabricated by combining two additive manufacturing techniques: melt electrospinning writing (MEW) and fused deposition modeling (FDM).

View Article and Find Full Text PDF