Publications by authors named "Cedric Pilorget"

Article Synopsis
  • The MAJIS instrument on the JUICE spacecraft will study the surfaces and atmospheres of the Jupiter system by analyzing visible and infrared light.
  • A calibration campaign was conducted before launch to gather necessary measurements for evaluating the instrument's performance, including signal-to-noise ratio and straylight effects.
  • The paper details the setup and methods used for calibration and discusses the radiometric, geometric, and spectral properties measured, as well as challenges faced during the campaign.
View Article and Find Full Text PDF

MAJIS, Moons and Jupiter Imaging Spectrometer, is one of the scientific payloads aboard European Space Agency's Jupiter Icy Moons Explorer mission. This instrument underwent a comprehensive characterization and calibration campaign before integration on the spacecraft. In this work, we report on the measurements of the instrumental spatial responses, including the slit and pixel functions, the knife edge function, the ensquared energy, and the keystone aberration.

View Article and Find Full Text PDF

The Moons And Jupiter Imaging Spectrometer (MAJIS) is the visible and near-infrared imaging spectrometer onboard the European Space Agency (ESA)'s Jupiter Icy Moons Explorer mission. Before its integration into the spacecraft, the instrument undergoes an extensive ground calibration to establish its baseline performances. This process prepares the imaging spectrometer for flight operations by characterizing the behavior of the instrument under various operative conditions and uncovering instrumental distortions that may depend on instrumental commands.

View Article and Find Full Text PDF

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water).

View Article and Find Full Text PDF
Article Synopsis
  • Before the Perseverance rover, Jezero crater's floor was theorized to have different origins, including lake-related or volcanic processes.
  • SuperCam's findings over the first 286 days indicated a volcanic terrain characterized by varying compositions, primarily basaltic, with higher levels of plagioclase in upper strata and richer pyroxene in lower strata.
  • The study identified the first Martian cumulate rock, highlighting its olivine-rich content and suggesting brief past watery conditions based on the presence of various alteration materials.
View Article and Find Full Text PDF

MicrOmega, a miniaturized near-infrared hyperspectral microscope, has been selected to characterize in the laboratory the samples returned from Ryugu by the Hayabusa2 mission. MicrOmega has been delivered to the Extraterrestrial Samples Curation Center of the Japanese Aerospace eXploration Agency at the Institute of Space and Astronautical Science in July 2020 and then mounted and calibrated to be ready for the analyses of the samples returned to Earth on December 6, 2020. MicrOmega was designed to analyze the returned samples within a field of view of 5 × 5 mm and a spatial sampling of 22.

View Article and Find Full Text PDF

The Planetary Terrestrial Analogues Library (PTAL) project aims at building and exploiting a database involving several analytical techniques, to help characterize the mineralogical evolution of terrestrial bodies, starting with Mars. Around 100 natural Earth rock samples have been collected from selected locations to gather a variety of analogs for martian geology, from volcanic to sedimentary origin with different levels of alteration. All samples are to be characterized within the PTAL project with different mineralogical and elemental analysis techniques, including techniques brought on actual and future instruments at the surface of Mars (near infrared [NIR] spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy).

View Article and Find Full Text PDF

Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body.

View Article and Find Full Text PDF

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

View Article and Find Full Text PDF