Publications by authors named "Cedric Parisien"

In the field of forensic science, we have recently introduced Raman imaging as a promising nondestructive technique to efficiently recover obliterated serial numbers in polycarbonate. The present study is extending the investigation toward different polymers for the reconstruction of abraded information by Raman spectroscopy. Samples of polyethylene, nylon, and nylatron, which are mainly used in items such as firearms, banknotes, and package materials, are investigated by monitoring the vibrational modes which are most susceptible to peak shifts and changes in the full width at half-maximum (fwhm) and peak intensity ratios.

View Article and Find Full Text PDF

In forensic science, there is a high demand for a technique that allows the revelation of fingermarks invisible to the naked eye as well as the chemical information they contain. Here, we present a feasibility study consisting of using both the luminescence enhanced by surface plasmon of gold nanoparticles, and the surface enhanced Raman spectroscopy signal of fingermark chemical components to image latent fingermarks. A latent fingermark deposited on a transparent glass substrate was visually revealed using single-metal deposition employing gold nanoparticles.

View Article and Find Full Text PDF

In forensic sciences, there is an increasing demand for nondestructive and reliable methods to retrieve obliterated information in polymers. This study demonstrates a case study for the potential of Raman spectroscopy to reconstruct abraded serial numbers. Residual strain and local variations in the structural arrangement are nondestructively imaged through peak shifts and variations of the full width at half-maximum of specific Raman lines, respectively.

View Article and Find Full Text PDF